首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

2.
Diurnal and seasonal changes of net photosynthetic rate (Pn) and the efficiency of photosystem 2 (Fv/Fm) were measured on two perennial species growing on a soil catena in semi-arid south-east Spain. Stipa tenacissima, a tussock grass, grows on shallow soil at the top of the catena and Retama sphaerocarpa, a leguminous shrub, grows in the valley bottom. A linear relationship was found between light saturated photosynthetic rates (Pmax) and diffusive leaf conductance (gl) in both Retama and Stipa indicating that the intercellular CO2 concentration (ci) was maintained constant in both species diurnally. Relatively high values of calculated ci in Retama cladodes suggested that was not the primary limitation to carbon assimilation. Fv/Fm for the two species when well watered was around 0.8. Although Retama cladodes maintained this value throughout the year, Fv/Fm decreased to a minimum of 0.43 in Stipa leaves, at the end of the dry season. Our data suggest that plants in the Rambla Honda can substantially reduce transpiration without reducing photosynthetic rates to the same extent by closing their stomata, because Pn is reduced primarily by high respiration, decreased mesophyll conductance and by photoinhibition or permanent damage of photosystem 2.  相似文献   

3.
Egbert  K.J.  Martin  C.E. 《Photosynthetica》2002,40(1):35-39
Four fluorescence parameters [Fv/Fm = the intrinsic efficiency of energy conversion via photosystem 2 (PS2); Fv/Fm= the efficiency of energy conversion via PS2 in the light; P = fraction of absorbed radiant energy utilized for photosynthesis; and D = fraction of absorbed radiant energy dissipated as heat] were measured on leaves of seven species of succulents having epidermal windows. While the function of leaf windows has reportedly been to increase absorption of radiant energy and, hence, the rate of photosynthesis in these species, recent evidence indicates that this translucent portion of epidermal tissue, lacking chlorophyll, may also result in photoinhibition in these species, especially for those with growth habits aboveground. Species with aboveground and belowground growth habits were compared with their leaf windows covered with reflective tape and with windows unobstructed. Results showed no increase in photoinhibition for these species resulting from the radiant energy penetrating the window tissue. Although the efficiency of the photosynthetic mechanism was not significantly influenced by the additional radiant energy provided by the window for individual species, there were significant differences in the efficiencies of radiant energy capture (Fv/Fm) and utilization (P) between the two growth habits. Species with an aboveground growth habit were less efficient in radiant energy utilization compared with the species having a belowground growth habit.  相似文献   

4.
为评价日本荚蒾(Viburnum japonicum)的耐盐雾能力,对4 a生实生苗用不同盐雾浓度处理(盐雾NaCl质量浓度分别为0%、1%、2%、3%),测定叶片净光合速率、最大光化学效率(Fv/Fm)和叶绿素含量(Chl)等指标的变化。结果表明,1%盐雾处理的日本荚蒾植株能够存活,但生长不良,大于2%的盐雾处理的植株全部死亡。随着浓度的升高,日本荚蒾叶片的最大光合速率、Fv/Fm及Chl含量下降,而光饱和点及光补偿点总体呈上升趋势。这说明盐雾胁迫通过伤害光系统Ⅱ反应中心、改变植物可利用光能范围及降低叶绿素含量影响植物的光合作用。  相似文献   

5.
《农业工程》2020,40(2):172-177
Cornus florida and its cultivars have attracted many attentions by its colorful ornamental features. Suitable moisture condition is a major factor in the success of introduction. However, little is known about dogwoods drought adaptation to seasonal water deficit, and recovery potential from the following rainfall. In this paper, treatment of continuous drought lasted 19 days, followed by re-watering for 7 days was performed on 10-month-old seedlings of C. florida, comparing with native C. kousa. Meantime, well-watered seedlings of two species were regarded as controls. Soil relative water content (SRWC) in stressed seedlings of both dogwoods decreased significantly with drought stress prolonged, and recovered to the normal level after re-watering. As the response to drought stress, significant decline in internal carbon dioxide concentration (Ci), remarkable increment in intrinsic water use efficiency (WUEi) in C. florida, significant increment in chlorophyll content in C. kousa, and notable decline in leaf relative water content (LRWC), maximum quantum efficiency of PSII photochemistry (Fv/Fm), photochemical quenching (qP), as well as significant increment in malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, soluble sugar content (SSC) in both dogwoods were observed. However, most of physiological variables recovered to the level of control after re-watering. Furthermore, drought stress promoted root volume, root area, root biomass, whereas inhibited seedling height, basal diameter, aboveground biomass, resulting in increase of root/shoot ratio. Our findings indicate that, although C. florida has a weaker performance than C. kousa under drought stress, it can recover to the normal level after re-watering. These results suggest that C. florida and its cultivars possess drought adaptive potential for introducing to southern China.  相似文献   

6.
The gas exchange, parameters of chlorophyll fluorescence, contents of pigments, and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), as well as lipid peroxidation were investigated in two field-grown coffee species, Coffea arabica and C. liberica, exposed to drought and re-hydration. Drought caused a more pronounced inhibition of net photosynthetic rate in C. liberica compared to C. arabica. The de-epoxidation of xanthophyll cycle pigments at midday estimated by leaf reflectance was much higher in C. arabica than in C. liberica, but no significant change was found in response to drought. Under moderate drought, the activities of SOD and APX increased significantly only in C. arabica. The maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) at predawn did not change and there was no lipid peroxidation during this time. Under severe drought Fv/Fm decreased and initial fluorescence (F0) increased for both species, and SOD activity increased, APX activity remained relatively high, and malondialdehyde (MDA) accumulated in C. arabica, while APX decreased in C. liberica. The photosynthetic apparatus of C. arabica was completely recovered after 5 d of re-irrigation as indicated by the restoration of Fv/Fm to the control values. A lack of recovery upon rewatering of C. liberica indicated irreversible damage to PS2. Hence compared to C. liberica, C. arabica possesses a higher desiccation-induced antioxidative protection and higher portion of the total pigment pool used in photoprotection, which might aid alleviating photoinhibitory damage during desiccation and photosynthesis recovery when favourable conditions are restored.The research was financially supported by the project of the Chinese Academy of Sciences (KSCX2-SW-104).  相似文献   

7.
8.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

9.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

10.
Kalapos  T.  Mázsa  K. 《Photosynthetica》2001,39(2):263-268
On a semiarid sand grassland (Festucetum vaginatae) colonised by juniper (Juniperus communis L.) shrubs terricolous lichens and mosses segregate strongly between microhabitats: certain species grow in the open grassland, others almost exclusively in the shade of junipers. The contrasting irradiances of these microhabitats influence much the metabolism of these organisms, and thus affect their small-scale distribution. This was confirmed by determining the efficiency of photochemical energy conversion by measuring chlorophyll a fluorescence parameters. In the open grassland maximum photochemical efficiency of photosystem 2 (PS2, Fv/Fm) declined from the humid spring to the hot and dry summer in all species, and this was caused by an increase in base fluorescence (F0), but not by the decrease in fluorescence maximum (Fm). In summer, mosses and lichens growing in the open grassland generally possessed lower Fv/Fm than cryptogams growing in the shade cast by juniper shrubs. Thus mosses and lichens in the open grassland suffer lasting reduction in photochemical efficiency in summer, which is avoided in the shade of junipers. Juniper shrubs indeed influence the composition and small-scale spatial pattern of sympatric terricolous lichen and moss communities by—among others—providing a shelter against high light in summer.  相似文献   

11.
Summary Recovery from winter depression of photosynthesis was studied in Pinus sylvestris, Pinus conforta and Picea abies by means of chlorophyll fluorescence and gas exchange measurements. During the winter 1986–1987 the fluorescence yield was low and no variable fluorescence was detectable before the end of March. In the field recovery of variable fluorescence/maximum fluorescence (Fv/Fm) during spring was slow for all three species studied. The temperature dependence of recovery was confirmed from measurements of the potential rate of recovery of Fv/Fm at different temperatures in the laboratory. At 20° C, Fv/Fm increased from 0.1 to 0.8 within 3 days. Recovery of Fv/Fm was paralleled by an increase in apparent photon yield. No significant differences could be demonstrated between the studied tree species in potential rate of recovery in the laboratory or in actual recovery in the field.  相似文献   

12.
Sensitivity to cold and freezing differs between populations within two species of live oaks (Quercus section Virentes Nixon) corresponding to the climates from which they originate. Two populations of Quercus virginiana (originating from North Carolina and north central Florida) and two populations of the sister species, Q. oleoides, (originating from Belize and Costa Rica) were grown under controlled climate regimes simulating tropical and temperate conditions. Three experiments were conducted in order to test for differentiation in cold and freezing tolerance between the two species and between the two populations within each species. In the first experiment, divergences in response to cold were tested for by examining photosystem II (PS II) photosynthetic yield (ΔF/F m′) and non-photochemical quenching (NPQ) of plants in both growing conditions after short-term exposure to three temperatures (6, 15 and 30°C) under moderate light (400 μmol m−2 s−1). Without cold acclimation (tropical treatment), the North Carolina population showed the highest photosynthetic yield in response to chilling temperatures (6°C). Both ecotypes of both species showed maximum ΔF/F m′ and minimum NPQ at their daytime growth temperatures (30°C and 15°C for the tropical and temperate treatments, respectively). Under the temperate treatment where plants were allowed to acclimate to cold, the Q. virginiana populations showed greater NPQ under chilling temperatures than Q. oleoides populations, suggesting enhanced mechanisms of photoprotective energy dissipation in the more temperate species. In the second and third experiments, inter- and intra-specific differentiation in response to freezing was tested for by examining dark-adapted F v/F m before and after overnight freezing cycles. Without cold acclimation, the extent of post-freezing declines in F v/F m were dependent on the minimum freezing temperature (0, −2, −5 or −10°C) for both populations in both species. The most marked declines in F v/F m occurred after freezing at −10°C, measured 24 h after freezing. These declines were continuous and irreversible over the time period. The North Carolina population, however, which represents the northern range limit of Q. virginiana, showed significantly less decline in F v/F m than the north central Florida population, which in turn showed a lower decline in Fv/F m than the two Q. oleoides populations from Belize and Costa Rica. In contrast, after exposure to three months of chilling temperatures (temperate treatment), the two Q. virginiana populations showed no decline in F v/F m after freezing at −10°C, while the two Q. oleoides populations showed declines in F v/F m reaching 0.2 and 0.1 for Costa Rica and Belize, respectively. Under warm growth conditions, the two species showed different F 0 dynamics directly after freezing. The two Q. oleoides populations showed an initial rise in F 0 30 min after freezing, followed by a subsequent decrease, while the Q. virginiana populations showed a continuous decrease in F 0 after freezing. The North Carolina population of Q. virginiana showed a tendency toward deciduousness in response to winter temperatures, dropping 58% of its leaves over the three month winter period compared to only 6% in the tropical treatment. In contrast, the Florida population dropped 38% of its leaves during winter. The two populations of the tropical Q. oleoides showed no change in leaf drop during the 3-months winter (10% and 12%) relative to their leaf drop over the same timecourse in the tropical treatment. These results indicate important ecotypic differences in sensitivity to freezing and cold stress between the two populations of Q. virginiana as well as between the two species, corresponding to their climates of origin.  相似文献   

13.
Photochemical efficiency, photosynthetic capacity, osmoprotectants, and relative water content (RWC) were recorded in saplings of two evergreen plants (Boehmeria rugulosa Wedd. and Olea glandulifera Wall. ex G. Don) grown inside (GL) and outside (OP) a glasshouse during the winter season. The OP plants experienced 2.0–2.5 °C lower air temperature and dew formation in comparison to GL plants. Diurnal observations indicated no change in RWC in the leaves of GL and OP plants, while significant reduction in both transpiration and net photosynthetic (P N) rates was observed in OP plants: the reduction in P N was much more prominent as was also reflected by poor water use efficiency of these plants. Similarly, OP plants also showed decrease in the apparent quantum yield and irradiance-saturated CO2 assimilation rate. The decrease in P N was not associated with decreased stomatal conductance. However, a significant reduction in the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and Chl content was recorded in the OP plants which also contained more total soluble saccharides but less proline contents. The greater enhancement of P N at 15 °C in comparison to measurements taken at 10 °C in OP plants over GL plants probably indicated an increase in mesophyll capacity of the OP plants’ growth at increased temperature. Hence the enhanced growth and productivity of plants grown in sheltered environments could be associated to their higher photosynthetic activity that may have important bearing on their field establishment and productivity in the long run. The response varied with plant species; reduction in P N was greater in B. rugulosa than in O. glandulifera. However, the recovery of OP plants in terms of Fv/Fm in the subsequent months revealed that photosynthetic system of these plants is revocable.  相似文献   

14.
Field experiments were conducted in Sicily (south Italy) to assess chlorophyll (Chl) fluorescence parameters in response of potato crop to nitrogen dose, to variation in genotype and in plant age, and to detect relationships between Chl content, fluorescence parameter Fv/Fm, and tuber yield. The experiment included five nitrogen doses (0, 10, 20, 30, and 40 g m−2) and four genotypes (Spunta, Sieglinde, Daytona, and Igea). Chl fluorescence parameters (initial fluorescence, F0, maximum fluorescence, Fm, variable fluorescence, Fv, Fv/Fm, Tmax (the time required to reach Fm), and Chl content were measured weekly between the appearance of the fifth and sixth leaves and the onset of plant senescence. A positive linear relationship was established between nitrogen supply and Chl content, F0, and Tmax. Nitrogen supply up to 10 g m−2 also had a positive effect on Fm and Fv, but above this rate it reduced Fv/Fm. Spunta had the highest Chl content, Fm, Fv, and Fv/Fm, but the lowest F0, whereas Sieglinde had the lowest Chl content, Fv, Fv/Fm, and Tmax and the highest F0. The cvs. Igea and Daytona exhibited intermediate Chl fluorescence parameters. Chl content and Tmax decreased with increasing plant age, whereas F0, Fm, and Fv increased until complete canopy development and thereafter declined until crop maturity. Tuber and plant dry matter yield were significantly correlated with Chl content, F0, and Tmax. Thus Chl fluorescence and content detect differences in the response of potato to N supply, can discriminate between genotypes, predict plant age, and yield performance under field conditions.  相似文献   

15.
Water stress effects were studied on three cultivars ofEragrostis curvula. Leaf water potential, RWC, total plantleaf area, green dry weight mass percentage and CO2 gas-exchangeweremeasured during the onset of stress and after recovery. After 3 days of waterstress, RWC of cv Tanganyika plants was around 30–40% of controls,while RWC of cvs Ermelo and Consol was around 50–60% of controls.However midday and predawn water potentials were lower in cvs Tanganyka andErmelo than in cv Consol. After re-watering, RWC and water potentials recoveredonly in Consol plants. A strong decrease of leaf area was recorded in cvsErmeloand Consol during water stress (about 91–94% less than the leafarea of controls). Photosynthesis decreased as a function of the degree ofwaterstress severity in all cultivars. Also, light saturated photosynthesis,CO2 quantum yield and light at which saturated photosynthesisoccurred, were strongly reduced by water stress. Recovery of photosynthesis wasfound in cv Consol after five days re-watering. Cv Consol showed a betterconservation of water and higher resistance to water stress than the other twocvs.  相似文献   

16.
Seedlings (70-d-old) of two tall fescue (Festuca arundinacea Schreb.) genotypes, heat-tolerant Jaguar 3 and heat-sensitive TF 66, were exposed to a high temperature stress of 35/30 °C (day/night) for 20 d and both light-saturated and CO2-saturated leaf stomatal conductance decreased, especially in TF 66. Higher reductions of quantum efficiency, carboxylation efficiency and maximum photochemical efficiency of photosystem 2 in dark adapted leaves (measured as Fv/Fm) occurred in TF 66 than in Jaguar 3. High temperature stress increased photorespiration in the two plants, but more in TF 66. Moreover, high temperature stress also reduced the growth, chlorophyll content and caused cell membrane injuries in the two cultivars, the changes were again more pronounced in TF 66 than in Jaguar 3.  相似文献   

17.
Karavatas  S.  Manetas  Y. 《Photosynthetica》1999,36(1-2):41-49
Photochemical efficiency of photosystem 2 (PS2), assessed from in situ chlorophyll (Chl) fluorescence measurements, was seasonally monitored in five evergreen sclerophyll and five malacophyllous drought semi-deciduous species, co-occurring in the same Mediterranean field site. In evergreen sclerophylls, a considerable drop in the variable (Fv) to maximum (Fm) Chl fluorescence ratio coincided with the lowest winter temperatures, indicating low PS2 efficiency during this period. Summer drought caused a comparatively slight decrease in Fv/Fm and only in three of the five evergreen sclerophyll species tested. In drought semi-deciduous shrubs, the winter drop in Fv/Fm was much less conspicuous. During the summer, and in spite of the severe and prolonged desiccation of their malacophyllous leaves, Fv/Fm was maintained high and only in one species the PS2 efficiency was transiently suppressed, when the leaf relative water content became lower than 30 %. Thus evergreen sclerophylls are more prone to photoinhibition by low winter temperatures, while the sensitivity of drought semi-deciduals depends on the extent and duration of summer drought. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

18.
The use of chlorophyll fluorescence as a method for detecting and monitoring plant stress arising from Tetranychus urticae (Koch) feeding injury was investigated. The effect of mite density (1–32 mites per 1.5 cm2 of leaf) and the duration of the feeding period (1–5 days) on the chlorophyll fluorescence parameters of bean (Phaseolus vulgaris) leaves were examined. Changes in chlorophyll fluorescence parameters were dependent both on mite density and duration of feeding. Decreases in F o, the initial fluorescence and F m, the maximum fluorescence led to a decrease in the ratio of variable to maximum fluorescence, F v/F m. The decrease in F v/F m is typical of the response of many plants to a wide range of environmental stresses and indicates a reduced efficiency of photosystem II (PSII) photochemistry. T 1/2, which is proportional to the pool size of electron acceptors on the reducing side of PSII, was also reduced in response to mite-feeding injury. The leaf chlorophyll content decreased with increasing mite density and duration of feeding but did not appear to contribute to the decrease in F v/F m. Chlorophyll fluorescence is an effective method for detecting and monitoring stress in T. urticae-injured bean leaves.  相似文献   

19.
Amalric  C.  Sallanon  H.  Monnet  F.  Hitmi  A.  Coudret  A. 《Photosynthetica》1999,37(1):107-112
The symbiotic association of endophyte fungus, Neotyphodium lolii, and ryegrass improves the ryegrass resistance to drought. This is shown by a 30 % increase in the number of suckers in infected plants (E+), compared to plants lacking endophyte (E−), and by a higher water potential in the E+ than E− plants. The E+ plants have higher stomatal conductance (g s), transpiration rate, net photosynthetic rate (P N), and photorespiratory electron transport rate than the E− plants. The maximal photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPS2) are not affected by the endophyte fungus. The increase in P N of the E+ plants subjected to water stress was independent from internal CO2 concentration. An increased P N was observed in E+ plants also in optimal water supply. Hence the drought resistance of E+ plants results in increased g s, P N, and photorespiratory electron transport rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Peanut Photosynthesis Under Drought and Re-Watering   总被引:2,自引:0,他引:2  
Lauriano  J.A.  Ramalho  J.C.  Lidon  F.C.  do Céu Matos  M. 《Photosynthetica》2004,42(1):37-41
The photosynthetic response of three Arachis hypogaea L. cultivars (57-422, 73-30, and GC 8-35) grown for two months was measured under water available conditions, severe water stress, and 24, 72, and 93 h following re-watering. At the end of the drying cycle, all the cultivars reached dehydration, relative water content (RWC) ranging between 40 and 50 %. During dehydration, leaf stomatal conductance (g s), transpiration rate (E), and net photosynthetic rate (P N) decreased more in cvs. 57-422 and GC 8-35 than in 73-30. Instantaneous water use efficiency (WUEi) and photosynthetic capacity (P max) decreased mostly in cv. GC 8-35. Except in cv. GC 8-35, the activity of photosystem 1 (PS1) was only slightly affected. PS2 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) were the main targets of water stress. After re-watering, cvs. 73-30 and GC 8-35 rapidly regained g s, E, and P N activities. Twenty-four hours after re-watering, the electron transport rates and RuBPCO activity strongly increased. P N and P max fully recovered later. Considering the different photosynthetic responses of the studied genotype, a general characterisation of the interaction between water stress and this metabolism is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号