首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides are important naturally occurring ligands of MHC molecules. X-ray crystallographic studies have enabled extensive characterization of such peptide ligands. Yet structural and dynamic changes of these peptides in the MHC bound state are not well understood. These conformational transitions are key to understanding the function of MHC molecules and for the development of peptide-based therapeutics. Employing NMR for such studies can fill this gap but it requires the availability of peptides labeled with NMR-active nuclei. Here we report production of nine-mer MHC-binding peptides for use in high resolution NMR studies. The method utilizes a fusion protein approach of attaching the peptide to an easily expressed bacterial protein. The fusion protein construct design allows for rapid purification of the fusion protein and avoids chemical modification of the peptide as a result of the cleavage reaction. The methods developed here allow for rapid cloning of additional MHC binding peptides without significant molecular biology effort. 8?C10 mg of mature freeze dried peptides can be obtained from 1 liter of minimal media, sufficient for NMR experimentation. Six uniformly 15N-labeled peptides have been successfully expressed in bacteria and NMR spectra with the expected number of well-resolved signals were recorded. The results obtained here will make peptide-MHC complexes amenable to structural analysis which has not been possible previously.  相似文献   

2.
The synthetic octapeptide peptide T (ASTTTNYT) has been shown to interfere with binding of the HIV-1 envelope glycoprotein gp120 to the chemokine receptor R5, thus preventing viral infection. This study investigated the degree of conformational order of two analogs of peptide T, one biologically active (D-Ala peptide T amide) and one inactive (D-Ala, D-Tyr peptide T amide) using nuclear magnetic resonance (NMR) spectroscopy in an aqueous environment, both in solution and in the frozen solid state. Standard solution NMR techniques such as DQFCOSY, HMQC, ROESY and inversion recovery measurements have been utilized to characterize these peptides. Solid state NMR experiments were likewise employed to study the peptides in a frozen glycerol:water mixture. The NMR results indicate that the monomeric form of both peptide T analogs have considerable conformational heterogeneity. Solid state NMR studies indicate aggregation of D-Ala peptide T, possibly into a beta-sheet structure, at concentrations higher than 10 mM.  相似文献   

3.
NMR spectroscopy provides a unique means to study molecular conformation, mechanisms of action and structure-function relationships for peptides and proteins in solution under conditions approaching those of their physiological environment. Development of NMR techniques, especially directed to the peptide and protein conformational analysis, is considered under the topics of two-level signal assignment and structural significance of homo- and heteronuclear spin-spin couplings. The results of NMR conformational analysis are presented for solution spatial structure of valinomy cin and gramicidin A antibiotics, honey-bee neurotoxin apamin, scorpion insectotoxin I5A and snake venom neurotoxins of "short" and "long" types. The structure-function relationships are discussed for these biologically active molecules.  相似文献   

4.
Antimicrobial peptides, or host defense peptides, are universal signaling and effector molecules in host defense and innate immunity. This article highlights various tools developed for cathelicidins and defensins, ranging from peptide identification, production, and structural biology, including the eight databases for antimicrobial peptides. Novel peptides can be identified from natural sources at both gene and protein levels. Solid-phase synthesis and bacterial expression are the two important methods for peptide production. Three-dimensional structures of antimicrobial peptides, primarily determined by solution NMR techniques, are essential for an in-depth understanding of the mode of action. The introduction of octanoyl phosphatidylglycerol as a bacterial membrane-mimetic model provides new insights into peptide-lipid interactions. The incorporation of structure and activity data into the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html) will lead to an integrated understanding of these peptides via structural bioinformatics.  相似文献   

5.
A Pardi  A Galdes  J Florance  D Maniconte 《Biochemistry》1989,28(13):5494-5501
Two-dimensional NMR data have been used to generate solution structures of alpha-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro5 and Arg9. The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins.  相似文献   

6.
7.
The conformations of three synthetic peptide analogs containing the dPro-dPro-dXaa motif (dXaa = dThr, dGlu, dAsn) in aqueous solution were studied by a combination of NMR and molecular modeling simulations. The three compounds were identified from a random D-amino acid tripeptide library on the basis of their ability to either mimic or block the diuretic activity of neuropeptides of the insect kinin family. TOCSY and ROESY correlations, as well as abnormal secondary chemical shifts for protons on the D-proline residues were employed to obtain conformational ensembles consistent with the experimental NMR data for the three analogs using an in vacuo simulated annealing protocol. Similar secondary structures were found for the three molecules after refinement, in agreement with the similarities observed between their NMR spectra. Unrestrained molecular dynamics simulations with explicit water representation indicate that the structural motifs found in vacuo are stable in aqueous solution. The three analogs can be considered initiators of right-handed poly D-proline II helices, mirror images of the poly L-proline II left-handed helical motifs normally found in proline-rich proteins. The role of these secondary folds on binding of the analogs to the kinin receptors is discussed.  相似文献   

8.
Riboflavin carrier protein (RCP) plays an important role in transporting vitamin B2 across placental membranes, a process critical for maintenance of pregnancy. Association of the vitamin with the carrier protein ensures optimal bioavailability, facilitating transport. The conformations of three antigenic peptide fragments encompassing residues 4-23 (N21), 170-186 (R18), and 200-219 (Y21) from RCP, which have earlier been studied as potential leads toward a synthetic peptide-based contraceptive vaccine, have been investigated using CD and NMR spectroscopy in aqueous solution and in the presence of the structure-stabilizing cosolvent hexafluoroacetone trihydrate (HFA). In aqueous solution at pH 3.0, all three peptides are largely unstructured, with limited helical population for the peptides R18 and Y21. The percentage of helicity estimated from CD experiments is 10% for both the peptides. A dramatic structural transition from an unstructured state to a helical state is achieved with addition of HFA, as evidenced by intensification of CD bands at 222 nm and 208 nm for Y21 and R18. The structural transition is completed at 50% HFA (v/v) with 40% and 35% helicity for R18 and Y21, respectively. No structural change is evident for the peptide N21, even in the presence of HFA. NMR analysis of the three peptides in 50% HFA confirms a helical conformation of R18 and Y21, as is evident from upfield shifts of CalphaH resonances and the presence of many sequential NH/NH NOEs with many medium-range NOEs. The helical conformation is well established at the center of the sequence, with substantial fraying at the termini for both the peptides. An extended conformation is suggested for the N21 peptide from NMR studies. The helical region of both the peptides (R18, Y21) comprises the core epitopic sequence recognized by the respective monoclonal antibodies. These results shed some light on the issue of structure and folding of antigenic peptides.  相似文献   

9.
beta-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of beta-amyloid fibrils poses a challenge because of the limited solubility of beta-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of beta-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as beta-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10-35 of human beta-amyloid and indicates that in fibrils, this peptide assumes a parallel beta-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Abeta peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.  相似文献   

10.
11.
The aqueous solution structure of the C-terminal thermolytic peptide of colicin E1 has been investigated using both one- and two-dimensional NMR techniques. The NMR data are consistent with a fold for the peptide very similar to that reported for the colicin A C-terminal peptide in the crystalline state, although some differences have been noted. The one-dimensional NMR spectrum of the peptide has been used to follow changes in both the structure and dynamics of the peptide on changing pH. The in vitro functionally competent form of the peptide (present in solution only below pH 6) does not differ in structure significantly from the higher pH form. However, small local conformational changes are observed together with an increase in mobility in some of the more hydrophilic regions. This suggests that the effect of lower pH is to change the ease with which the major conformational changes during insertion into a membrane can occur.  相似文献   

12.
Pleurocidin is an antimicrobial peptide that was isolated from the mucus membranes of winter flounder (Pseudopleuronectes americanus) and contributes to the initial stages of defense against bacterial infection. From NMR structural studies with the uniformly (15)N-labeled peptide, a structure of pleurocidin was determined to be in a random coil conformation in aqueous solution whereas it assumes an alpha-helical structure in TFE and in dodecylphosphocholine (DPC) micelles. From (15)N relaxation studies, the helix is a rigid structure in the membrane-mimicking environment. Strong NOESY cross-peaks from the pleurocidin to the aliphatic chain on DPC confirm that pleurocidin is contained within the DPC micelle and not associated with the surface of the micelle. From diffusion studies it was determined that each micelle contains at least two pleurocidin molecules.  相似文献   

13.
The co-solvent 2,2,2-trifluoroethanol (TFE) has been often used to aid formation of secondary structure in solution peptides or alternately as a denaturant within protein folding studies. Hen egg white lysozyme (HEWL) and a synthetic model peptide defining HEWL helix-4 were used as comparative model systems to systematically investigate the effect of increasing TFE concentrations on the structure of proteins and peptides. HEWL was analyzed using NMR, far-UV CD and fluorescence spectroscopy; with correlation of these results towards changes in enzymatic activity and the helix-4 peptide was analysed using NMR. Data illustrates two conflicting modes of interaction: Low TFE concentrations stabilize tertiary structure, observed from an increase in the number of NMR NOE contacts. Higher TFE concentrations denatured HEWL with the loss of lysozyme tertiary structure. The effects of TFE upon secondary structural elements within HEWL are distinct from those observed for the helix-4 peptide. This illustrates a dissimilar interaction of TFE towards both protein and peptide at equivalent TFE concentrations. The concentration that TFE promotes stabilization over denaturation is likely to be protein dependent although the structural action can be extrapolated to other protein systems with implications for the use of TFE in structural stability studies.  相似文献   

14.
Apolipoprotein (apo) E regulates plasma lipid homeostasis through its ability to interact with the low density lipoprotein (LDL) receptor family. Whereas apoE is not a ligand for receptor binding in buffer alone, interaction with lipid confers receptor recognition properties. To investigate the nature of proposed lipid binding-induced conformational changes in apoE, we employed multidimensional heteronuclear NMR spectroscopy to determine the structure of an LDL receptor-active, 58-residue peptide comprising residues 126-183 of apoE in association with the micelle-forming lipid dodecylphosphocholine (DPC). In the presence of 34 mm DPC the peptide forms a continuous amphipathic helix from Glu131 to Arg178. NMR relaxation studies of DPC-bound apoE-(126-183), in contrast to apoE-(126-183) in the presence of TFE, are consistent with an isotropically tumbling peptide in solution giving a global correlation time of approximately 12.5 ns. These data indicate that the helical peptide is curved and constrained by a lipid micelle consisting of approximately 48 DPC molecules. Although the peptide behaves as if it were tumbling isotropically, spectral density analysis reveals that residues 150-183 have more motional freedom than residues 134-149. These molecular and dynamic features are discussed further to provide insight into the structural basis for the interaction between apoE and the ligand binding repeats of the LDL receptor.  相似文献   

15.
MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying "non-receptiveness." Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study.  相似文献   

16.
The use of carbohydrate-mimicking peptides to induce immune responses against surface polysaccharides of pathogenic bacteria offers a novel approach to vaccine development. Factors governing antigenic and immunogenic mimicry, however, are complex and poorly understood. We have addressed this question using the anti-lipopolysaccharide monoclonal antibody F22-4, which was raised against Shigella flexneri serotype 2a and shown to protect against homologous infection in a mouse model. In a previous crystallographic study, we described F22-4 in complex with two synthetic fragments of the O-antigen, the serotype-specific saccharide moiety of lipopolysaccharide. Here, we present a crystallographic and NMR study of the interaction of F22-4 with a dodecapeptide selected by phage display using the monoclonal antibody. Like the synthetic decasaccharide, the peptide binds to F22-4 with micromolar affinity. Although the peptide and decasaccharide use very similar regions of the antigen-binding site, indicating good antigenic mimicry, immunogenic mimicry by the peptide was not observed. The F22-4-antigen interaction is significantly more hydrophobic with the peptide than with oligosaccharides; nonetheless, all hydrogen bonds formed between the peptide and F22-4 have equivalents in the oligosaccharide complex. Two bridging water molecules are also in common, adding to partial structural mimicry. Whereas the bound peptide is entirely helical, its structure in solution, as shown by NMR, is helical in the central region only. Moreover, docking the NMR structure into the antigen-binding site shows that steric hindrance would occur, revealing poor complementarity between the major solution conformation and the antibody that could contribute to the absence of immunogenic mimicry.  相似文献   

17.
Two-dimensional NMR techniques were utilized to determine the secondary structural elements of endothelin-1 (ET-1), a potent vasoconstrictor peptide, and two of its point mutants, Met-7 to Ala-7 (ETM7A), and Asp-8 to Ala-8 (ETD8A) in acetic acid-d3/water solution. Sequence specific NMR assignments were determined for all three peptides, as well as chemical shifts and NOE connectivity patterns. The chemical shifts of ET-1 and ETM7A are identical (+/- 0.05 ppm) except for the site of substitution, whereas marked shift changes were detected between ET-1 and ETD8A. These chemical shift differences imply that the Asp-8 to Ala-8 mutation has induced a conformational change relative to the parent conformation. All three molecules show the same basic nuclear Overhauser effect (NOE) pattern, which suggests that the gross conformation of all three molecules is the same. Small changes in sequential NOE intensities and changes in medium-range NOE patterns indicate that there are subtle conformational differences between ET-1 and ETD8A.  相似文献   

18.
The solution structure of tertiapin, a 21-residue bee venom peptide, has been characterized by circular dichroism (CD), two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and distance geometry. A total of 21 lowest error structures were obtained from distance geometry calculations. Superimposition of these structures shows that the backbone of tertiapin is very well defined. One type-I reverse turn from residue 4 to 7 and an α-helix from residue 12 to 19 exist in the structure of tertiapin. The α-helical region is best defined from both conformational analysis and structural superimposition. The overall three-dimensional structure of tertiapin is highly compact resulting from side chain interactions. The structural information obtained from CD and NMR are compared for both tertiapin and apamin (ref. 3), another bee venom peptide. Tertiapin and apamin have some similar secondary structure, but display different tertiary structures. © 1993 Wiley-Liss, Inc.  相似文献   

19.
The membrane-active, cationic, β-hairpin peptide, arenicin, isolated from marine polychaeta Arenicola marina exhibits a broad spectrum of antimicrobial activity. The peptide in aqueous solution adopts the significantly twisted β-hairpin conformation without pronounced amphipathicity. To assess the mechanism of arenicin action, the spatial structure and backbone dynamics of the peptide in membrane-mimicking media and its pore-forming activity in planar lipid bilayers were studied. The spatial structure of the asymmetric arenicin dimer stabilized by parallel association of N-terminal strands of two β-hairpins was determined using triple-resonance nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles. Interaction of arenicin with micelles and its oligomerization significantly decreased the right-handed twist of the β-hairpin, increased its amphipathicity, and led to stabilization of the peptide backbone on a picosecond to nanosecond time scale. Relaxation enhancement induced by water-soluble (Mn(2+)) and lipid-soluble (16-doxylstearate) paramagnetic probes pointed to the dimer transmembrane arrangement. Qualitative NMR and circular dichroism study of arenicin-2 in mixed DPC/1,2-dioleoyl-sn-glycero-3-phosphoglycerol bicelles, sodium dodecyl sulfate micelles, and lipid vesicles confirmed that a similar dimeric assembly of the peptide was retained in membrane-mimicking systems containing negatively charged lipids and detergents. Arenicin-induced conductance was dependent on the lipid composition of the membrane. Arenicin low-conductivity pores were detected in the phosphatidylethanolamine-containing lipid mixture, whereas the high-conductivity pores were observed in an exclusively anionic lipid system. The measured conductivity levels agreed with the model in which arenicin antimicrobial activity was mediated by the formation of toroidal pores assembled of two, three, or four β-structural peptide dimers and lipid molecules. The structural transitions involved in arenicin membrane-disruptive action are discussed.  相似文献   

20.
Complete proton NMR assignments have been made for a synthetic 18-amino acid peptide named systemin, which functions as a wound-induced polypeptide hormone in tomato plants, and three of its derivatives. The wild-type peptide and this synthetic homolog have equivalent activities in their functional roles as systemic inducing signals in tomato plants. Proton NMR studies were carried out to characterize the solution properties of systemin. A variety of homonuclear proton NMR experiments at both 500 and 600 MHz were utilized in making these assignments, which have resulted in additional structural information. Whereas these results provide no evidence for persistence of common secondary (helix, sheet) or tertiary structural elements in the systemin polypeptide, there is evidence for two distinct molecular conformations at the carboxy terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号