首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Phenol degradation by microorganisms adsorbed on activated carbon   总被引:5,自引:0,他引:5  
Summary The phenol degradation by Candida sp. and Pseudomonas sp. immobilized on activated carbon was investigated. Thanks to its great adsorptive surface, activated carbon is suited as supporting material for microorganisms and also provides a high adsorption capacity for phenol.The immobilization by adsorption avoids any unphysiological treatment of the microorganisms. One gram activated carbon adsorbed in 10 h about 4×109 Pseudomonas cells and 3×108 Candida cells. While the free cells did not tolerate more than 1.5 g/l phenol, the adsorbed microorganisms survived at temporary high phenol concentrations up to 15 g/l, and they degraded about 90% of the adsorbed phenol.The activated carbon operated like a depot: the adsorbed phenol diffused out of the carbon and could be metabolized by the microorganisms. The results give an explanation of the stimulating effect of activated carbon in the treatment of waste waters observed until now.  相似文献   

2.
Aromatic compounds are abundant in aqueous environments due to natural resources or different manufacturer’s wastewaters. In this study, phenol degradation by the yeast, Trichosporon cutaneum ADH8 was compared in three forms namely: free cells, nonmagnetic immobilized cells (non-MICs), and magnetically immobilized cells (MICs). In addition, three different common immobilization supports (alginate, agar, and polyurethane foams) were used for cell stabilization in both non-MICs and MICs and the efficiency of phenol degradation using free yeast cells, non-MICs, and MICs for ten consecutive cycles were studied. In this study, MICs on alginate beads by 12 g/l Fe2O3 magnetic nanoparticles had the best efficiency in phenol degradation (82.49%) and this amount in the seventh cycle of degradation increased to 95.65% which was the highest degradation level. Then, the effect of magnetic and nonmagnetic immobilization on increasing the stability of the cells to alkaline, acidic, and saline conditions was investigated. Based on the results, MICs and non-MICs retained their capability of phenol degradation in high salinity (15 g/l) and acidity (pH 5) conditions which indicating the high stability of immobilized cells to those conditions. These results support the effectiveness of magnetic immobilized biocatalysts and propose a promising method for improving the performance of biocatalysts and its reuse ability in the degradation of phenol and other toxic compounds. Moreover, increasing the resistance of biocatalysts to extreme conditions significantly reduces costs of the bioremediation process.  相似文献   

3.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

4.
Summary The thermotolerant yeast, Kluyveromyces marxianus IMB3 produced 11g ethanol/l during growth at 45°C on media containing 4% (w/v) lactose when immobilized in alginate beads whereas the free cells produced 5g ethanol/l. A magnetically responsive biocatalyst, prepared by incorporating Fe3O4 into the alginate matrix increased ethanol production to 12g/l in batch-fed reactors. Ethanol concentrations were further increased to a maximum of 18g/l by immobilization of the endogenous K. marxianus -galactosidase to the Fe3O4 particles prior to inclusion into the alginate matrix. Maximum ethanol productivity by the system was 87% of the maximum theoretical yield.  相似文献   

5.
The thermotolerant, ethanol producing yeast strain, K. marxianus IMB3 was immobilized in calcium alginate containing magnetically responsive Fe3O4 particles. In these studies the β-galactosidase derived from K. marxianus IMB3 was immobilized onto the Fe3O4 particles prior to inclusion into the alginate matrix. Ethanol production by the immobilized microorganism in the presence of Fe3O4 reached a maximum of 16?g/L on 40?g/L lactose whereas prior immobilization of the enzyme to the particles and inclusion into the alginate matrix increased ethanol production to a maximum concentration of 18 g/L. When Mn2+ was incorporated into fermentations containing the immobilized enzyme in the alginate matrix, ethanol production increased further to a maximum concentration of 20?g/L. In addition, the behaviour of the magnetically responsive biocatalyst containing the co-immobilized enzyme was examined in a batch-fed system in the presence and absence of Mn2+.  相似文献   

6.
Summary The influence of nitrogen and phosphate on the biosynthesis of nikkomycin was studied in chemically defined medium. Cells of Streptomyces tendae were immobilized on porous glass particles in a fluidized-bed reactor for continuous production of nikkomycin. Phosphate had no significant influence on the biosynthesis of nikkomycin. However, even a very low concentration of phosphate in the production medium (00.0125 mmol/l) resulted in microbial growth on the particles. The concentration of nitrogen was highly effective in the regulation of the biosynthesis of nikkomycin. A high level of antibiotic production (maximum 3.05 mg/g dry cell weight per hour) was maintained for a period of about 200 h in a medium that contained nitrogen at a concentration of 0.2 g NH4NO3/l. Offprint requests to: H. U. Trück  相似文献   

7.
Pseudomonas sp. strain M285 immobilized on diatomaceous earth beads was used to remove 3,5,6-trichloro-2-pyridinol (TCP) from industrial wastewater. Batch studies showed that immobilized Pseudomonas sp. strain M285 mineralized [2,6-14C]TCP rapidly; about 75% of the initial radioactivity was recovered as 14CO2. Transformation of TCP was inhibited by high concentrations of salt, and addition of osmoprotectants (proline and betaine at 1 mM) did not reduce the adverse effect of salt. TCP-containing wastewater (60–140 mg/l) was passed through columns containing immobilized Pseudomonas sp. strain M285 at increasing flow rates and increasing TCP concentrations; TCP removal of 80%–100% was achieved. Addition of nutrients, such as glucose and yeast extract, retarded TCP degradation. Growing cell cultures were found to be better inocula for immobilization than resting cells. Received: 5 February 1996 / Received last revision: 12 August 1996 / Accepted: 24 August 1996  相似文献   

8.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

9.
Abstract

α‐Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl2 concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl2 concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL?1, and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40°C.  相似文献   

10.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

11.
Abstract

Biosorption is potentially an attractive technology for the treatment of wastewater by removing pesticide molecules from dilute solutions. This study investigated the feasibility of an isolated Bacillus sp. S14 immobilized in calcium alginate that was used as a biosorbent for Malathion removal from aqueous solutions in batch mode. The highest value of Malathion uptake by isolated Bacillus sp. S14 (1.33g L?1, dry basis) immobilized in 3% calcium alginate was 64.4% at 25°C and pH7.0 when the initial Malathion concentration was 50 mg L?1. Equilibrium was attained at 8h. The sorption data conformed well to the Fruendlich isotherm model.  相似文献   

12.
The populations of Pseudomonas sp. B4, Escherichia coli, Klebsiella pneumoniae, Micrococcus flavus, and Rhizobium leguminosarum biovar phaseoli declined rapidly in lake water. The initially rapid decline of the two pseudomonads and R. phaseoli was followed by a period of slow loss of viability, but viable cells of the other species were not found after 10 days. The rapid initial phase of decline was not a result of Bdellovibrio spp., bacteriophages, or toxins in the water since Bdellovibrio spp. were not present and passage of the lake water through filters that should not have removed bacteriophages or soluble toxins led to the elimination of the rapid phase of decline. The addition of 250 g of cycloheximide and 30 g of nystatin per ml eliminated viable protozoa form the lake water, and the population of Pseudomonas sp. B4 did not fall and the decline of E. coli and K. pneumoniae was delayed or slowed under these conditions. Pseudomonas sp. L2 proliferated rapidly in lake water amended with glucose, phosphate, and NH4NO3, but its numbers subsequently fell abruptly; however, in water amended with cycloheximide and nystatin, which killed indigenous protozoa, the population density was higher and the fall in numbers was delayed. Of the nutrients, the chief response was to carbon, but when glucose was added, phosphorus and nitrogen stimulated growth further. Removing other bacteria by filtering the lake water before inoculation with Pseudomonas sp. L2 suggested that competition reduced the extent of response of the pseudomonad to added nutrients. We suggest that the decline in lake water of bacteria that are resistant to starvation may be a result of protozoan grazing and that the extent of growth of introduced species may be limited by the supply of available carbon and sometimes of nitrogen and phosphorus, and by predation by indigenous protozoa.  相似文献   

13.
Abstract

Pseudomonas cepacia lipase (PCL) was immobilized in alginate microgel beads by electrostatic dispersion. The high electrical potential applied in the immobilization process could significantly decrease the droplet size. The optimum conditions for lipase immobilization were 2% (w/v) alginate, 100 mM CaCl2, 8 mg/mL enzyme, 4 kV electrical potential and 200 μm mean bead size. Under these conditions, 78.2 U/g of immobilized PCL activity was obtained with 39.1% retained activity and 57.2% immobilization efficiency. The immobilized PCL (PCL-CA) was subsequently used in the enantioselective hydrolysis of (R, S)-N-(2-ethyl-6-methylphenyl) alanine methyl ester. Although PCL-CA exhibited slightly lower activity than free PCL, it preserved the high enantioselectivity (E-value >?200), which afforded enantiomerically pure (R)-acid (99% e.e.p). Furthermore, PCL-CA exhibited higher thermal stability, storage and medium stability than that of free PCL. Batch-wise operational stability studies demonstrated that PCL-CA retained its initial activity for at least 10 cycles of hydrolysis.  相似文献   

14.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

15.
The novel exopolysaccharide bioflocculant HBF-3 is produced by Halomonas sp. V3a′, which is a mutant strain of the deep-sea bacterium Halomonas sp. V3a. Response surface methodology (RSM) was employed to optimize the production medium for increasing HBF-3 production. Using a Plackett–Burman experimental design to aid in the first step of optimization, edible glucose, MgSO4·7H2O, and NH4Cl were found to be significant factors affecting HBF-3 production. To determine the optimal concentration of each significant variable, a central composite design was employed. Based on response surface and canonical analysis, the optimum concentrations of the critical components were obtained as follows: edible glucose, 16.14 g/l; MgSO4·7H2O, 2.73 g/l; and NH4Cl, 1.97 g/l. HBF-3 production obtained by using the optimized medium was 4.52 g/l, which was in close agreement with the predicted value of 4.55 g/l. By scaling up fermentation from flask to fermenter, HBF-3 production was further increased to 5.58 g/l.  相似文献   

16.
Summary The central aspect of this work was to investigate the influence of nitrogen feed rate at constant C/N ratio on continuous citric acid fermentation by Candida oleophila ATCC 20177. Medium ammonia nitrogen and glucose concentrations influenced growth and production. Space-time yield (STY) meaning volumetric productivity, biomass specific productivity (BSP), product concentration, product selectivity and citrate/isocitrate ratio increased with increasing residence time (RT). BSP increased in an exponential mode lowering nitrogen feed rates. Highest BSP for citric acid of 0.13 g/(g h) was achieved at lowest NH4Cl concentration of 1.5 g/l and highest STY (1.2 g/l h) with 3 g NH4Cl/l at a RT of 25 h. Citric acid 74.2 g/l were produced at 58 h RT and 6 g NH4Cl/l. Glucose uptake rate seems to be strictly controlled by growth rate of the yeast cells. Optimum nitrogen concentration and adapted C/N ratio are essential for successful continuous citric acid fermentation. The biomass-specific nitrogen feed rate is the most important factor influencing continuous citric acid production by yeasts. Numerous chemostat experiments showed the feasibility of continuous citrate production by yeasts.  相似文献   

17.
4-Nitrophenol degrading bacterial strainCorynebacterium sp. 8/3 was isolated from chemically polluted soil. The product of cometabolic transformation of 4-nitrophenol was identified as 4-nitrocatechol., Effect of immobilization (encapsulation in calcium alginate) ofCorynebacterium sp. cells on the process of 4-nitrophenol transformation was investigated. 4-Nitrophenol was converted by encapsulated cells and encapsulation had a protective effect, on 4-nitrophenol degrading bacteria in repeated cycles of incubation. Transformation of 4-nitrophenol to 4-nitrocatechol by encapsulated cells was influenced by pH of medium but was not influenced by concentration of alginate and CaCl2. The count of viable cells in alginate beads declined approximately by one order of magnitude after 10 d of incubation. Presented at the 4th Mini-Symposium on Biosorption and Microbial Degradation, Prague, Czech Republic, November 26–29, 1996.  相似文献   

18.
Immobilized Pseudomonas sp. HZ519 cells have been used for transformation of validamycin A to valienamine and the degradation pathway of validamycin A by Pseudomonas sp. HZ519 has also been studied. Substrate inhibition in immobilized cell system was avoided. An average of 8.6 g L?1 valienamine concentration was obtained when concentration of validamycin A was increased up to 120 g L?1. Through a treatment of the immobilized cells with 0.3 mol L?1 substrate, the activity of the immobilized cells was increased distinctly. Compared with free cells, the productivity of valienamine by CA-immobilized cells was improved about three times. The reusability of the immobilized cells was evaluated with repeated–batch degradation experiments. The Tiele modulus was obtained from the experimental effectiveness factor. The result showed that the degradation process in the immobilized system was governed by intraparticle diffusion and chemical reaction.  相似文献   

19.
Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds.  相似文献   

20.
Cho YG  Rhee SK  Lee ST 《Biodegradation》2000,11(1):21-28
The effect of the presence of an alternate toxiccompound (phenol) on the p-nitrophenol(PNP)-degrading activity of freely suspended andcalcium alginate immobilized Nocardioides sp.NSP41 was investigated. In the single substrateexperiments, when the concentration of phenol and PNPwas increased to 1400 mg l-1 and 400 mg l-1,respectively, the initial cell concentrations in thefreely suspended cell culture should be higher than1.5 g dry cell weight l-1 for completedegradation. In the simultaneous degradationexperiment, when the initial concentration of phenolwas increased from 100 to 400 mg l-1, thespecific PNP degradation rate at the concentration of200 mg l-1 was decreased from 0.028 to 0.021h-1. A freely suspended cell culture with a highinitial cell concentration resulted in a highvolumetric degradation rate, suggesting the potentialuse of immobilized cells for simultaneous degradation.In the immobilized cell cultures, althoughsimultaneous degradation of PNP and phenol wasmaintained, the specific PNP and phenol degradationrate decreased. However, a high volumetric PNP andphenol degradation rate could be achieved byimmobilization because of the high cell concentration.Furthermore, when the immobilized cells were reused inthe simultaneous degradation of PNP and phenol, theydid not lose their PNP- and phenol-degrading activityfor 12 times in semi-continuous cultures. Takentogether, the use of immobilized Nocardioidessp. NSP41 for the simultaneous degradation of PNP andphenol at high concentrations is quite feasiblebecause of the high volumetric PNP and phenoldegradation rate and the reusability of immobilizedcells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号