首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gas exchange patterns in the ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae), were investigated using an infrared gaseous analyser (IRGA) and a coulometric O2 respirometer (manometric–volumetric system). Before testing, the beetles were kept either in dry (dehydrated) or moist (hydrated) conditions for 1 day. Their subsequent gas exchange patterns did not depend on their state of humidity but rather were controlled by the humidity of the insect chamber during gas exchange measurement. If this chamber contained dry air, the beetles exhibited CO2 release by burst, which we interpreted as cyclic gas exchange (CGE) with inter‐burst periods, but if the chamber was switched to contain moist air, then cyclic CO2 release was soon abandoned and a pattern of continuous gas exchange appeared. Measurements with the coulometric respirometer in moist air showed that continuous gas exchange was often associated with weak abdominal pulsations, which we interpreted as active ventilation. Their metabolic rate was lower during gas exchange cycles than during continuous gas exchange. We revealed that in the ladybird beetle metabolic rate increased in moist air when the gas exchange pattern transitioned from cyclic to continuous.  相似文献   

2.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

3.
Although temperature and relative humidity have been quantitated and their effects on research data studied, few studies have measured the air turnover rates at cage level. We evaluated the air distribution and air turnover rates in unoccupied shoe-box mouse cages, filter-top covered cages and shoe-box mouse cages housed in a flexible film isolator by using discontinuous gas chromatography/mass spectrometry and smoke. Results showed that air turnover was most rapid in the unoccupied shoe-box mouse cage and slowest in the filter-top covered cage. Placing mice in the filter-top covered cage did not significantly improve the air turnover rate. Although filter-top covered cages reduce cage-to-cage transmission of disease, the poor airflow observed within these cages could lead to a buildup of gaseous pollutants that may adversely affect the animal's health.  相似文献   

4.
This work is intended as a review of gas exchange processes between the atmosphere and the terrestrial vegetation, which have been known for more than two centuries since the discovery of photosynthesis. The physical and biological mechanisms of exchange of carbon dioxide, water vapour, volatile organic compounds emitted by plants and air pollutants taken up by them, is critically reviewed. The role of stomatal physiology is emphasised, as it controls most of these processes. The techniques used for measurement of gas exchange fluxes between the atmosphere and vegetation are outlined.  相似文献   

5.
The effectiveness of a cubicle containment system in preventing gaseous and particulate cross-contamination in animal facilities was evaluated using several techniques. Using a nitrous oxide dilution technique, no airborne cross-contamination was found between cubicles as long as all cubicle doors were kept closed. If the doors to the cubicle in which the gas was released were partially or completely opened, low concentrations of nitrous oxide could be detected in adjacent cubicles. These concentrations increased when the air exchange rates in the cubicle were decreased. Similar results were obtained when particulate transfer was measured using aerosolized Staphlococcus epidermidis and a slit to agar sampling technique. Air flows and point air velocities within the cubicle and the animal room were also studied. A trial of Sendai virus transmission between cubicles revealed no intercubicle transmission after 3 weeks of exposure. Overall, the cubicle containment system appeared to be an effective means of achieving limited biohazard containment, applicable to many research housing needs.  相似文献   

6.
Biological purification of exhaust air using fixed bacterial monocultures   总被引:4,自引:0,他引:4  
Summary This paper presents the results of basic investigations on reactions and process engineering in the biological purification of exhaust air in a trickle-bed reactor. The biocatalysts used were pollutant-specific bacterial monocultures, which were immobilized on various carriers. By using different pollutants (e.g. acetone, propionaldehyde, naphthalene and toluence, crude gas concentrations: 5–35 ppm), the effect of the water solubility of the gaseous substances on separation efficiency was studied. Furthermore, a combination of monocultures was used for degradation of a mixture of pollutants. The results show that, with suitable combinations of bacteria, pollutants and carriers, conversions of more than 80% at a space velocity of about 1000-1 can be achieved by this method.  相似文献   

7.
Summary A long-term field experiment permanently measuring gas exchange in the top of a 70-year-old spruce, continued for through the 1990 growing season. Two gas exchange chambers were run simultaneously under identical climatic conditions. One of two similar twigs was exposed to ambient air whereas the other received pure air. These experiments aimed to examine the ability of the stomata to control water balance, comparing pure and ambient air. This was done not only in natural climatic conditions but also in experimental, specifically maintained stress situations. Special care was taken to ensure that only steady state values of stomatal responses are related to the environmental stimuli. During a drought period lasting several weeks, overshooting transpiration values were documented for the ambient air. The two twigs do not merely differ in their control capacity, but the behaviour of the stomata in ambient air deviates from the norm. The increasingly uncontrolled water losses during the drought period have a negative effect on photosynthetic capacity. The influence of water deficit on stomatal response to other environmental factors (light, CO2) is shown. Due to deficient control quality of the stomata lower stress tolerance in the face of drought is suggested in ambient air as compared with pure air. By tracing dysfunctions to structural changes in the cell walls of the stomatal apparatus, a mechanism is described explaining forest decline under the combined influence of air pollutants and drought stress.  相似文献   

8.
While the importance of cortical aerenchyma in flood tolerance is well established, this pathway for gaseous exchange is often destroyed during secondary growth. For woody species, therefore, an additional pathway must develop for oxygen to reach submerged tissues. In this paper we examine the potential for the aerenchymatous phellem (cork) of Lythrum salicaria L. to provide a pathway for gas transport from shoots to roots and assess its importance in flood tolerance. Plants in which the continuity of the aerenchymatous phellem between shoots and roots was broken showed a significant reduction in oxygen levels in roots, but no difference in carbon dioxide levels compared with controls that retained an intact phellem. These plants also had a greater total shoot height and shoot dry weight, and an increase in shoot/root dry mass ratios compared with controls. Total dry weight was not significantly affected by this treatment. This study is the first to show that the aerenchymatous phellem can provide a pathway for gaseous exchange between roots and shoots and can influence plant morphology and patterns of resource allocation. This suggests that this tissue may play a significant role in the flood tolerance of a woody plant.  相似文献   

9.
The importance of gas phase diffusion in insect gas exchange remains unclear. The role of diffusion in gas exchange of developing Hyalophora cecropia pupae was examined by altering the gaseous diffusion coefficient in the breathing mixture. Gaseous diffusion coefficients were manipulated by substituting helium or sulfur hexafluoride for the nitrogen usually present in air. Sensitive mass loss recordings were employed to monitor gas exchange activity. Mass loss recordings showed a two-phase cycle, open and closed-flutter. Mass loss rates during the open and closed-flutter periods were not altered in proportion to the changes induced in the rate of diffusion. Open-phase duration was inversely and proportionally related to the diffusion coefficient. These results are consistent with changes in spiracle resistance or convective flow during the open period in response to a change in the diffusion coefficient. In addition, they indicate a significant gas phase diffusive resistance within the pupal tracheal system. This previously unreported gas phase resistance appears to be a major determinant of the duration of the open period and thus of overall water loss rates in these pupae.  相似文献   

10.
Air pollutants seriously interfere with the maintenance of unipolar ionized atmospheres required in experimenting with the biological effects of gaseous ions. The construction and operation of an air purification unit designed to reduce air pollution to tolerable levels are described; it has functioned satisfactorily in conducting experiments with plants and animals.  相似文献   

11.
木本植物对大气气态污染物吸收净化作用的研究   总被引:15,自引:0,他引:15  
一、工作目的与意义 植物通过叶片上的气孔和枝条上的皮孔,可将大气污染物吸收入体内。在体内通过氧化还原过程进行中和而成无毒物质(即降解作用),或通过根系排出体外,或积累贮藏于某一器官内。植物对大气污染物的这种吸收、降解和积累、排出,实际起到了对大气污染的净化作用。一般情况下,植物吸收一定数量的大气污染物后,并不表现出异常的反应。而只是在超过其生理上的忍受限量后,才表现出可见的或不可见的症状。植物对大气污染物的这一生  相似文献   

12.
Measurement of gas exchange rates in plant tissue culture vessels   总被引:1,自引:0,他引:1  
The aerial microenvironment in culture vessels has a significant effect on the growth and development of plantlets in vitro. Since the gas exchange between outside air and inner air can influence the microenvironment of culture vessel, it is necessary to measure the air exchange rate for various vessels. In this study, water vapor was used as the tracer gas, and the change of absolute humidity inside the vessel was calculated continuously by the measured values of a relative humidity sensing element. The outside environment was maintained at constant humidity level by a saturated salt solution. The RH data were transformed into absolute humidity and the specific humidity ratio. The air exchange rates of several tissue culture vessels were then calculated. The exchange rate was between 0.0145 h–1 to 0.0376 h–1. This technique provides an inexpensive, rapid and simple way to determine the air exchange rate of a culture vessel within a short period. The effects of the air current velocities on the exchange rates of vessels were also determined.  相似文献   

13.
A study was made on the induction of sister-chromatid exchanges (SCE) in cultured Chinese hamster V79 cells exposed to the photochemical reaction products of toluene plus NO2 in the gas phase. The photochemical reaction products of toluene plus NO2 were obtained by photochemical reaction of a toluene--NO2/dry air system in a photochemical smog chamber and then exposed to cultured cells for 2 h using a system for in vitro gas exposure. SCEs were induced at all concentrations of the photochemical reaction products employed in the present study, and the highest SCE frequency observed for the highest concentration tested for each component was 3.6 times higher than that of the control. Cytogenotoxicity which was evaluated with induced-SCEs of the photochemical reaction products of toluene plus NO2 was much the same as that of the previously reported photochemical reaction products of propylene plus NO2 (Shiraishi and Bandow, 1985), but was considerably stronger than that of typical gaseous air pollutants such as NO2 alone and O3 alone.  相似文献   

14.
In the last decades, many studies have shown an increase in the prevalence of allergic rhinitis and asthma mainly in urban communities, especially in industrialized countries. Airborne pollutants such as diesel exhaust particles, ozone, nitrogen dioxide and sulphur dioxide have been implicated in the initiation and exacerbation of allergic airway diseases. Epidemiologic studies have shown clear associations between air pollution and allergic diseases, in vivo and in vitro studies have provided biologic link and potential molecular mechanisms. Particulate and gaseous pollutants can act both on the upper and lower airways to initiate and exacerbate cellular inflammation through interaction with the innate immune system. As a consequence, increased non-specific airway hyper-responsiveness and airway resistance have been observed in man. Diesel exhaust particles can both induce and exacerbate in vivo allergic responses. They can also modify the immune system's handling of the allergen. The effects of gaseous pollutants on immune responses to allergens are not fully understood. We review the different mechanisms involved in the enhancement of allergic inflammation by urban air pollutants, including effects on cytokine and chemokine production, as well as activation of different immune cells. We discuss the hypothesis that pollutants' effects on the immune system involve hierarchical oxidative stress. Susceptibility genes to air pollution inducing allergic diseases are also discussed.  相似文献   

15.
Stricter regulations on volatile organic compounds and hazardous air pollutants have increased the demand for abatement technologies. Biofiltration, a process in which contaminated air is passed through a biologically active bed, can be used to remove these pollutants from air streams. In this study, a fungal vapor-phase bioreactor containing a strain of the dimorphic black yeast, Exophiala lecanii-corni, was used to treat a gas stream contaminated with toluene. The maximum toluene elimination capacity in short-term tests was 270 g m(-3) h(-1), which is 2 to 7 times greater than the toluene elimination capacities typically reported for bacterial systems. The fungal bioreactor also maintained toluene removal efficiencies of greater than 95% throughout the 175-day study. Harsh operating conditions such as low moisture content, acidic biofilms, and nitrogen limitation did not adversely affect performance. The fungal bioreactor also rapidly reestablished high toluene removal efficiencies after an 8-day shutdown period. These results indicate that fungal bioreactors may be an effective alternative to conventional abatement technologies for treating high concentrations of pollutants in waste gas streams.  相似文献   

16.
A quick, cheap, and accurate method for the determination of ammonia in air is described. Ammonia and water vapor are trapped simultaneously in a gas sampling tube cooled in liquid nitrogen. Subsequently ammonia is derivatized with o-phthaldialdehyde and determined using fluorescence detection. The detection limit of ammonia in a gaseous sample is about 1 nmol per liter of gas. The recovery, using a calibration gas of 6.00 ppm ammonia in nitrogen, is 102.9 +/- 6.4%. Examples are presented in which this method is used for the determination of ammonia in environmental air and in expired air during exhaustive exercise of a human subject. It is suggested that this method can be used for the determination of volatile ammonia and other compounds in air during environmental and biological monitoring and in research.  相似文献   

17.
《Free radical research》2013,47(1):795-807
In the past decades air pollution has increased worldwide. We also gained more insight into the complex interactions between different air pollutants in the atmosphere as well as their effects on living cells and organisms. It also has been unequivocally shown by several groups in different countries that oxy radicals play an outstanding role in the interconversion of air pollutants as well as during the manifestation of toxic effects. Not only living systems are affected by air pollutants, but also inorganic systems such as buildings and sculptures. In the following overview the most important reactions occuring in the atmosphere as well as effects of oxidative gaseous compounds and particles such as diesel soot and asbestos will be discussed.  相似文献   

18.
Acid deposition, a direct effect of gaseous air pollutants, is causing widespread damage to terrestrial and aquatic ecosystems. Further, these pollutants are responsible for the corrosion of building materials and cultural objects, as well as having an impact on human health. In Cuba, main atmospheric deposition of nitrogen compounds varies from approximately 12.0 to 65.0 kg N ha(-1) year(-1) in rural areas. Ammonia and ammonium are the most important elements in Cuba's tropical conditions.  相似文献   

19.
Dispersed water-immiscible solvents are known to enhance oxygen transfer rates in oxygen-limited aerobic fermentations. Here, this technique is applied to improve the mass transfer rate of poorly water-soluble gaseous pollutants during the biological treatment of waste gases. In a stirred-tank reactor, the enhancement of mass transfer rates was studied as a function of the pollutant solubility in water. The solvent used was FC40 (up to 10% v/v) and the model gaseous pollutants were toluene and oxygen (moderately and poorly water-soluble, respectively).

The overall volumetric mass transfer coefficient from the gas to the bulk liquid (klagl) was measured under nonsteady-state conditions in the absence of micro-organisms. It was found to be essentially constant for the solvent volume fractions tested and for both toluene and oxygen. Using the values of klagl and the partition coefficient gas/liquid (mgl), the enhancement of the mass transfer rate by solvent addition could be predicted theoretically. A good agreement between the theoretical evaluation and the experimental results from experiments in the presence of biological consumption was observed. An enhancement of the mass transfer rate by a factor of 1.1 was found for toluene using a dispersion containing 10% (v/v) FC40 while the oxygen transfer rate increased by a factor of two at the same solvent volume fraction. It was further demonstrated theoretically for other gaseous compounds that the addition of solvent has a more pronounced effect on the enhancement of the transfer rate in the case of poorly water-soluble compounds compared to moderately water-soluble ones.  相似文献   


20.
Summary Microorganisms were able to remove hydrocarbons (pentane and isobutane) from air by biological action in a columnar bioreactor with ceramic packing. The reactor was operated in a liquid continuous mode with gas recirculation and a slow addition of the organic-containing air. After a period of acclimation, the reactor has operated for 12 months with only pentane and isobutane as carbon sources. The gaseous hydrocarbons have been degraded throughout this period. The hydrocarbon removal rates measured between 1 and 2 g h–1 m–3. The microbes were shown to be able to degrade these gaseous hydrocarbons completely in a closed bioreactor without any additional nutrients.Research supported by the Advanced Industrial Concepts Division-Biological and Chemical Technologies Research. U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems. Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号