首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the biochemical and functional properties of the recently identified, uncharacterised CLIC-2 protein. Sequence alignments showed that CLIC-2 has a high degree of sequence similarity with CLIC-1 and some similarity to the omega class of glutathione transferases (GSTO). A homology model of CLIC-2 based on the crystal structure of CLIC-1 suggests that CLIC-2 belongs to the GST structural family but, unlike the GSTs, CLIC-2 exists as a monomer. It also has an unusual enzyme activity profile. While the CXXC active site motif is conserved between CLIC-2 and the glutaredoxins, no thiol transferase activity was detected. In contrast, low glutathione peroxidase activity was recorded. CLIC-2 was found to be widely distributed in tissues including heart and skeletal muscle. Functional studies showed that CLIC-2 inhibited cardiac ryanodine receptor Ca2+ release channels in lipid bilayers when added to the cytoplasmic side of the channels and inhibited Ca2+ release from cardiac sarcoplasmic reticulum vesicles. The inhibition of RyR channels was reversed by removing CLIC-2 from the solution or by adding an anti-CLIC-2 antibody. The results suggest that one function of CLIC-2 might be to limit Ca2+ release from internal stores in cells.  相似文献   

2.
The mechanism of activation of the cardiac calcium release channel/ryanodine receptor (RyR) by luminal Ca2+ was investigated in native canine cardiac RyRs incorporated into lipid bilayers in the presence of 0.01 microM to 2 mM Ca2+ (free) and 3 mM ATP (total) on the cytosolic (cis) side and 20 microM to 20 mM Ca2+ on the luminal (trans) side of the channel and with Cs+ as the charge carrier. Under conditions of low trans Ca2+ (20 microM), increasing cis Ca2+ from 0.1 to 10 microM caused a gradual increase in channel open probability (Po). Elevating cis Ca2+ above 100 microM resulted in a gradual decrease in Po. Elevating trans [Ca2+] enhanced channel activity (EC50 approximately 2.5 mM at 1 microM cis Ca2+) primarily by increasing the frequency of channel openings. The dependency of Po on trans [Ca2+] was similar at negative and positive holding potentials and was not influenced by high cytosolic concentrations of the fast Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N, N-tetraacetic acid. Elevated luminal Ca2+ enhanced the sensitivity of the channel to activating cytosolic Ca2+, and it essentially reversed the inhibition of the channel by high cytosolic Ca2+. Potentiation of Po by increased luminal Ca2+ occurred irrespective of whether the electrochemical gradient for Ca2+ supported a cytosolic-to-luminal or a luminal-to-cytosolic flow of Ca2+ through the channel. These results rule out the possibility that under our experimental conditions, luminal Ca2+ acts by interacting with the cytosolic activation site of the channel and suggest that the effects of luminal Ca2+ are mediated by distinct Ca2+-sensitive site(s) at the luminal face of the channel or associated protein.  相似文献   

3.
Myeloperoxidase, released by activated phagocytes, forms reactive oxidants by catalysing the reaction of halide and pseudo-halide ions with H(2)O(2). These oxidants have been linked to tissue damage in a range of inflammatory diseases. With physiological levels of halide and pseudo-halide ions, similar amounts of HOCl (hypochlorous acid) and HOSCN (hypothiocyanous acid) are produced by myeloperoxidase. Although the importance of HOSCN in initiating cellular damage via thiol oxidation is becoming increasingly recognized, there are limited data on the reactions of HOSCN with other targets. In the present study, the products of the reaction of HOSCN with proteins has been studied. With albumin, thiols are oxidized preferentially forming unstable sulfenyl thiocyanate derivatives, as evidenced by the reversible incorporation of (14)C from HOS(14)CN. On consumption of the HSA (human serum albumin) free thiol group, the formation of stable (14)C-containing products and oxidation of tryptophan residues are observed. Oxidation of tryptophan residues is observed on reaction of HOSCN with other proteins (including myoglobin, lysozyme and trypsin inhibitor), but not free tryptophan, or tryptophan-containing peptides. Peptide mass mapping studies with HOSCN-treated myoglobin, showed the addition of two oxygen atoms on either Trp(7) or Trp(14) with equimolar or less oxidant, and the addition of a further two oxygen atoms to the other tryptophan with higher oxidant concentrations (> or = 2-fold). Tryptophan oxidation was observed on treating myoglobin with HOSCN in the presence of glutathione and ascorbate. Thus tryptophan residues are likely to be favourable targets for the reaction in biological systems, and the oxidation products formed may be useful biomarkers of HOSCN-mediated protein oxidation.  相似文献   

4.
Single channel models of intracellular calcium (Ca(2+)) channels such as the 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by constant background cytosolic [Ca(2+)]. This assumption neglects the fact that Ca(2+) released by open channels may influence subsequent gating through the processes of Ca(2+)-activation or inactivation. Similarly, the influence of the dynamics of luminal depletion on the stochastic gating of intracellular Ca(2+) channels is often neglected, in spite of the fact that the sarco/endoplasmic reticulum [Ca(2+)] near the luminal face of intracellular Ca(2+) channels influences the driving force for Ca(2+), the rate of Ca(2+) release, and the magnitude and time course of the consequent increase in cytosolic domain [Ca(2+)]. Here we analyze how the steady-state open probability of several minimal Ca(2+)-regulated Ca(2+) channel models depends on the conductance of the channel and the time constants for the relaxation of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] to the bulk [Ca(2+)] of both compartments. Our approach includes Monte Carlo simulation as well as numerical solution of a system of advection-reaction equations for the multivariate probability density of elevated cytosolic [Ca(2+)] and depleted luminal [Ca(2+)] conditioned on each state of the stochastically gating channel. Both methods are subsequently used to study the role of luminal depletion in the dynamics of Ca(2+) puff/spark termination in release sites composed of Ca(2+) channels that are activated, but not inactivated, by cytosolic Ca(2+). The probability density approach shows that such minimal Ca(2+) release site models may exhibit puff/spark-like dynamics in either of two distinct parameter regimes. In one case, puffs/spark termination is due to the process of stochastic attrition and facilitated by rapid Ca(2+) domain collapse [cf. DeRemigio, H., Smith, G., 2005. The dynamics of stochastic attrition viewed as an absorption time on a terminating Markov chain. Cell Calcium 38, 73-86]. In the second case, puff/spark termination is promoted by the local depletion of luminal Ca(2+).  相似文献   

5.
Changes in cytosolic free Ca2+ concentration [( Ca2+]i) due to Ca2+ entry or Ca2+ release from internal stores were spatially resolved by digital imaging with the Ca2+ indicator fura-2 in frog sympathetic neurons. Electrical stimulation evoked a rise in [Ca2+]i spreading radially from the periphery to the center of the soma. Elevated [K+]o also increased [Ca2+]i, but only in the presence of external Ca2+, indicating that Ca2+ influx through Ca2+ channels is the primary event in the depolarization response. Ca2+ release or uptake from caffeine-sensitive internal stores was able to amplify or attenuate the effects of Ca2+ influx, to generate continued oscillations in [Ca2+]i, and to persistently elevate [Ca2+]i above basal levels after the stores had been Ca2(+)-loaded.  相似文献   

6.
Identification of the genetic basis of human diseases linked to dysfunctional free calcium (Ca2+) signaling has triggered an explosion of interest in the functional characterization of the molecular components regulating intracellular Ca2+ homeostasis. There is a growing appreciation of the central role of intracellular ryanodine-sensitive Ca2+ release channel (RyR) regulation in skeletal and cardiac muscle pathologies, including malignant hyperthermia, heart failure, and sudden cardiac death. The use of cloned RyR isoforms and recombinant expression techniques has greatly facilitated the elucidation of the molecular basis of RyR Ca2+ release functionality. This review will focus on the recombinant techniques used in the functional characterization of recombinant RyR isoforms and the insights that these approaches have yielded in unraveling the mechanistic basis of RyR channel functionality.  相似文献   

7.
As an inhibitor of Ca(2+) release through ryanodine receptor (RYR) channels, the skeletal muscle relaxant dantrolene has proven to be both a valuable experimental probe of intracellular Ca(2+) signaling and a lifesaving treatment for the pharmacogenetic disorder malignant hyperthermia. However, the molecular basis and specificity of the actions of dantrolene on RYR channels have remained in question. Here we utilize [(3)H]ryanodine binding to further investigate the actions of dantrolene on the three mammalian RYR isoforms. The inhibition of the pig skeletal muscle RYR1 by dantrolene (10 microm) was associated with a 3-fold increase in the K(d) of [(3)H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles such that dantrolene effectively reversed the 3-fold decrease in the K(d) for [(3)H]ryanodine binding resulting from the malignant hyperthermia RYR1 Arg(615) --> Cys mutation. Dantrolene inhibition of the RYR1 was dependent on the presence of the adenine nucleotide and calmodulin and reflected a selective decrease in the apparent affinity of RYR1 activation sites for Ca(2+) relative to Mg(2+). In contrast to the RYR1 isoform, the cardiac RYR2 isoform was unaffected by dantrolene, both in native cardiac SR vesicles and when heterologously expressed in HEK-293 cells. By comparison, the RYR3 isoform expressed in HEK-293 cells was significantly inhibited by dantrolene, and the extent of RYR3 inhibition was similar to that displayed by the RYR1 in native SR vesicles. Our results thus indicate that both the RYR1 and the RYR3, but not the RYR2, may be targets for dantrolene inhibition in vivo.  相似文献   

8.
Various reports have demonstrated that the sphingolipids sphingosine and sphingosine-1-phosphate are able to induce Ca2+ release from intracellular stores in a similar way to second messengers. Here, we have used the sea urchin egg homogenate, a model system for the study of intracellular Ca2+ release mechanisms, to investigate the effect of these sphingolipids. While ceramide and sphingosine-1-phosphate did not display the ability to release Ca2+, sphingosine stimulated transient Ca2+ release from thapsigargin-sensitive intracellular stores. This release was inhibited by ryanodine receptor blockers (high concentrations of ryanodine, Mg2+, and procaine) but not by pre-treatment of homogenates with cADPR, 8-bromo-cADPR or blockers of other intracellular Ca2+ channels. However, sphingosine rendered the ryanodine receptor refractory to cADPR. We propose that, in the sea urchin egg, sphingosine is able to activate the ryanodine receptor via a mechanism distinct from that used by cADPR.  相似文献   

9.
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels.  相似文献   

10.
Ryanodine receptors (RyRs) of pulmonary arterial smooth muscle cells (PASMCs) play important roles in major physiological processes such as hypoxic pulmonary vasoconstriction and perinatal pulmonary vasodilatation. Recent studies show that three subtypes of RyRs are coexpressed and RyR-gated Ca2+ stores are distributed heterogeneously in systemic vascular myocytes. However, the molecular identity and subcellular distribution of RyRs have not been examined in PASMCs. In this study we detected mRNA and proteins of all three subtypes in rat intralobar PASMCs using RT-PCR and Western blot. Quantitative real-time RT-PCR showed that RyR2 mRNA was most abundant, approximately 15-20 times more than the other two subtypes. Confocal fluorescence microscopy revealed that RyRs labeled with BODIPY TR-X ryanodine were localized in the peripheral and perinuclear regions and were colocalized with sarcoplasmic reticulum labeled with Fluo-5N. Immunostaining showed that the subsarcolemmal regions exhibited clear signals of RyR1 and RyR2, whereas the perinuclear compartments contained mainly RyR1 and RyR3. Ca2+ sparks were recorded in both regions, and their activities were enhanced by a subthreshold concentration of caffeine or by endothelin-1, indicating functional RyR-gated Ca2+ stores. Moreover, 18% of the perinuclear sparks were prolonged [full duration/half-maximum (FDHM) = 193.3 +/- 22.6 ms] with noninactivating kinetics, in sharp contrast to the typical fast inactivating Ca2+ sparks (FDHM = 44.6 +/- 3.2 ms) recorded in the same PASMCs. In conclusion, multiple RyR subtypes are expressed differentially in peripheral and perinuclear RyR-gated Ca2+ stores; the molecular complexity and spatial heterogeneity of RyRs may facilitate specific Ca2+ regulation of cellular functions in PASMCs.  相似文献   

11.
The ability of O(2) levels to regulate Ca(2+) signalling in non-excitable cells is poorly understood, yet crucial to our understanding of Ca(2+)-dependent cell functions in physiological and pathological situations. Here, we demonstrate that hypoxia mobilizes Ca(2+) from an intracellular pool in primary cultures of cortical astrocytes. This pool can also be mobilized by bradykinin, which acts via phospholipase C and inositol trisphosphate production. By contrast, hypoxic Ca(2+) mobilization utilizes ryanodine receptors, which appear to be either present on the same intracellular pool, or on a separate but functionally coupled pool. Hypoxic activation of ryanodine receptors requires formation of cyclic ADP ribose, since hypoxic Ca(2+) mobilization was fully prevented by nicotinamide (which inhibits ADP ribosyl cyclase) or by 8-Br-cADP ribose, an antagonist of cyclic ADP ribose. Our results demonstrate for the first time the involvement of cyclic ADP ribose in hypoxic modulation of Ca(2+) signalling in the central nervous system, and suggest that this modulator of ryanodine receptors may play a key role in the function of astrocytes under conditions of fluctuating O(2) levels.  相似文献   

12.
Three ryanodine receptor (RyR) isoforms, RyR1, RyR2, and RyR3, are expressed in mammalian tissues. It is unclear whether RyR isoforms are capable of forming heteromeric channels. To investigate their ability to form heteromeric channels, we co-expressed different RyR isoforms in HEK293 cells and examined their interactions biochemically and functionally. Immunoprecipitation studies revealed that RyR2 is able to interact physically with RyR3 and RyR1 in HEK293 cells and that RyR1 does not interact with RyR3. Co-expression of a ryanodine binding deficient mutant of RyR2, RyR2 (I4827T), with RyR3 (wt) restored [(3)H]ryanodine binding to the mutant. Interactions between RyR isoforms were further assessed by complementation analysis using mutants RyR2 (I4827T), RyR2 (E3987A), RyR3 (I4732T), RyR3 (E3885A), and RyR1 (E4032A), all of which are deficient in caffeine response. Caffeine-induced Ca(2+) release was restored in HEK293 cells co-transfected with mutants RyR2 (I4827T) and RyR3 (E3885A), RyR2 (E3987A) and RyR3 (I4732T), or RyR2 (I4827T) and RyR1 (E4032A), but not with RyR1 (E4032A) and RyR3 (I4732T), indicating that mutants of RyR2 and RyR3, or RyR2 and RyR1, but not RyR1 and RyR3, are able to complement each other. Co-expression of RyR3 (wt) and a pore mutant of RyR2, RyR2 (G4824A), produced regulatable single channels with intermediate unitary conductances. These observations demonstrate that RyR2 is capable of forming functional heteromeric channels with RyR3 and RyR1, whereas RyR1 is incapable of forming heteromeric channels with RyR3.  相似文献   

13.
In vivo microdialysis combined with measurements of 45Ca efflux from pre-labelled rat hippocampus has been utilised in our laboratory to demonstrate NMDA-evoked 45Ca2+ release to dialysate, reflecting calcium-induced calcium release (CICR) via ryanodine receptors (RyR). In the present study we attempted to reproduce this phenomenon in the rabbit hippocampus. Application of 1 mM NMDA to dialysis medium induced a decrease in Ca2+ concentration in dialysate, as a result of extracellular Ca2+ influx to neurones. The release of 45Ca2+ was not observed, instead a decrease in 45Ca2+ efflux rate from the NMDA treated rabbit hippocampus was noted, along with release to dialysate of prostaglandin D2, taurine and phosphoethanolamine. All these effects, reflecting different steps of intracellular calcium signalling, were insensitive to 100 microM dantrolene and 50 microM ryanodine, RyR modulators known to interfere with NMDA-evoked 45Ca2+ release in the rat hippocampus. Thus, although the results of this study demonstrate the role of extracellular Ca2+ influx to neurones in NMDA-evoked generation of Ca2+ signal in the rabbit hippocampus, the activity of CICR was not detected.  相似文献   

14.
McCarthy TV  Datar S  Mackrill JJ 《FEBS letters》2003,554(1-2):133-137
CD38 is a multifunctional ectoenzyme that catalyses formation of cyclic ADP ribose (cADPr), a second messenger that opens ryanodine receptor (RyR) Ca2+ channels. Despite its importance in signal transduction processes, little is known about the mechanisms regulating CD38 expression levels. In the current study, ryanodine stimulation of Ca2+ release in Namalwa cells decreased both CD38 protein abundance and cyclase activity. Reductions in cyclase activity were prevented by RyR antagonists, by lysosomal blockers, though not by calpain or proteasomal inhibitors. These findings indicate a novel negative feedback mechanism between RyR channel activity and CD38 abundance acts in cADPr signal transduction.  相似文献   

15.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry.  相似文献   

16.
Changes in [Ca2+]i are essential in modulating a variety of cellular functions. In no other cell type does the regulation of [Ca2+]i reach the level of sophistication observed in cells of neuronal origin. Because of its physicochemical characteristics, the fluorescent Ca2+ indicator Fura-2 has become extremely popular among neuroscientists. The use of this probe, however, has generated a number of problems, in particular, extracytosolic trapping and leakage from intact cells. In the first part of this contribution we briefly discuss the practical application of Fura-2 to the study of [Ca2+]i in primary cultures of neurons and astrocytes. In the second part, we review some recent data (mainly from our laboratories) obtained in neurons and neuroendocrine cells, concerning the regulation of different types of Ca2+ channels and the role and mechanism of intracellular Ca2+ mobilization. The experimental evidence supporting the existence of a previously unrecognised organelle, the calciosome, that we hypothesize represents the functional equivalent in non-muscle cells of sarcoplasmic reticulum, will also briefly be discussed.  相似文献   

17.
Axonal growth cones migrate along the correct paths during development, not only directed by guidance cues but also contacted by local environment via cell adhesion molecules (CAMs). Asymmetric Ca2+ elevations in the growth cone cytosol induce both attractive and repulsive turning in response to the guidance cues (Zheng, J.Q. 2000. Nature. 403:89-93; Henley, J.R., K.H. Huang, D. Wang, and M.M. Poo. 2004. Neuron. 44:909-916). Here, we show that CAMs regulate the activity of ryanodine receptor type 3 (RyR3) via cAMP and protein kinase A in dorsal root ganglion neurons. The activated RyR3 mediates Ca2+-induced Ca2+ release (CICR) into the cytosol, leading to attractive turning of the growth cone. In contrast, the growth cone exhibits repulsion when Ca2+ signals are not accompanied by RyR3-mediated CICR. We also propose that the source of Ca2+ influx, rather than its amplitude or the baseline Ca2+ level, is the primary determinant of the turning direction. In this way, axon-guiding and CAM-derived signals are integrated by RyR3, which serves as a key regulator of growth cone navigation.  相似文献   

18.
19.
Fusion proteins and full-length mutants were generated to identify the Ca(2+)-free (apoCaM) and Ca(2+)-bound (CaCaM) calmodulin binding sites of the skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1). [(35)S]Calmodulin (CaM) overlays of fusion proteins revealed one potential Ca(2+)-dependent (aa 3553-3662) and one Ca(2+)-independent (aa 4302-4430) CaM binding domain. W3620A or L3624D substitutions almost abolished completely, whereas V3619A or L3624A substitutions reduced [(35)S]CaM binding to fusion protein (aa 3553-3662). Three full-length RyR1 single-site mutants (V3619A,W3620A,L3624D) and one deletion mutant (Delta4274-4535) were generated and expressed in human embryonic kidney 293 cells. L3624D exhibited greatly reduced [(35)S]CaM binding affinity as indicated by a lack of noticeable binding of apoCaM and CaCaM (nanomolar) and the requirement of CaCaM (micromolar) for the inhibition of RyR1 activity. W3620A bound CaM (nanomolar) only in the absence of Ca(2+) and did not show inhibition of RyR1 activity by 3 microm CaCaM. V3619A and the deletion mutant bound apoCaM and CaCaM at levels compared with wild type. V3619A activity was inhibited by CaM with IC(50) approximately 200 nm, as compared with IC(50) approximately 50 nm for wild type and the deletion mutant. [(35)S]CaM binding experiments with sarcoplasmic reticulum vesicles suggested that apoCaM and CaCaM bind to the same region of the native RyR1 channel complex. These results indicate that the intact RyR1 has a single CaM binding domain that is shared by apoCaM and CaCaM.  相似文献   

20.
Molecular genetics of ryanodine receptors Ca2+-release channels   总被引:7,自引:0,他引:7  
Rossi D  Sorrentino V 《Cell calcium》2002,32(5-6):307-319
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号