首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
An C  Mou Z 《PloS one》2012,7(1):e31130
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.  相似文献   

6.
We provide the first conclusive evidence that Xanthomonas axonopodis pv. citri Asiatic strain (Xac-A) and, in particular, Xac-Aw, a unique citrus canker A strain isolated from Key lime in Wellington, Florida, induces a hypersensitive reaction (HR) in grapefruit leaves. Using the heterologous tomato pathogen X. perforans , as a recipient of the Xac-Aw genomic library, we identified a 1599-bp open reading frame responsible for HR in grapefruit, but not Key lime, and designated it avrGf 1. Xac-AwΔ avrGf 1 produced typical, although visibly reduced, citrus canker symptoms (i.e. raised pustules) in grapefruit and typical canker symptoms in Key lime. We also determined that the X. perforans transconjugant carrying an Xac-Aw hrpG elicited HR in grapefruit and Key lime leaves, and that xopA in X. perforans was partly responsible for HR. Xac-A transconjugants carrying the X. perforans xopA were reduced in ability to grow in grapefruit leaves relative to wild-type Xac-A. The X. perforans xopA appears to be a host-limiting factor. An avrBs3 homologue, which contained 18.5 repeats and induced HR in tomato, was designated avrTaw . This gene, when expressed in a pustule-minus Xac-Aw, did not complement pustule formation; however, pthAw , a functional pthA homologue, complemented the mutant strain to produce typical pustules in Key lime, but markedly reduced pustules in grapefruit. Both avrBs3 homologues, when expressed in a typical Xac-A strain, resulted in typical citrus canker pustules in grapefruit, indicating that neither homologue suppressed pustule size in grapefruit. Xac-Aw contains other unidentified factors that suppress development in grapefruit.  相似文献   

7.
S. Monastero 《BioControl》1965,10(4):335-338
Summary The Author reports on the essays of artificial biological control of the olive fly (Dacus oleae Gmel.) made by himself andGenduso with the specific parasiteOpius c. siculus Mon. found in Sicily. The Authors followingDelanoue's technic have bred theseOpius in laboratory on larvae ofCeratitis capitata Wied; so they were able to release: in 1961 — 1000Opius in a small olive plantation near Palermo; in 1962 — 24000Opius in the island of Pantelleria (Sicily); in 1963 — 40000Opius in the island of Salina (Eolic Islands-Sicily); in 1964 — 180000Opius also in the island of Salina. The releasedOpius are ever reproduced, reducing theDacus pest. From the agricultural standpoint the results have been satisfactory and the Author hope to release a great number ofOpius in the olive plantation of all Eolic islands, in 1965.

Nota:Fischer (1958, 1963) ha pubblicato un lavoro sugliOpius della Regione etiopica, nel quale, a parziale modifica del precedente guidizio di sinonimia, dichiara perl'Opius siculus Mon.: ?sarebbe meglio considerarlo una razza del concolor? (?am besten als Rasse von O. concolorSzépl. aufzufassen?).  相似文献   

8.
9.

Background  

Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis.  相似文献   

10.
Riassunto

L'A. descrive il comportamento del nucleolo di Paphiopedilum Spicerianum nel nucleo in riposo c in divisione, mettendo in evidenza l'esistenza di una sostanza nucleolare, conservata in seguito a fissazione' del materiale con una miscela di acido cromico e formolo, con postcromizzazione in acido cromico.  相似文献   

11.
12.
13.
14.
Resistance of greenhouse-selected strains of the cabbage looper, Trichoplusia ni, to Bacillus thuringiensis subsp. kurstaki was countered by a hybrid strain of B. thuringiensis and genetically modified toxins Cry1AbMod and Cry1AcMod, which lack helix α-1. Resistance to Cry1AbMod and Cry1AcMod was >100-fold less than resistance to native toxins Cry1Ab and Cry1Ac.Insecticidal proteins from Bacillus thuringiensis are used widely for pest control, but evolution of resistance by pests can reduce their efficacy (3, 4, 6, 14). Resistance to B. thuringiensis toxins has been reported in field populations of four species of Lepidoptera, one species in response to sprays (3, 14) and three species in response to transgenic crops (10, 15, 16). Here, we focus on understanding and countering resistance to sprays of Bacillus thuringiensis subsp. kurstaki that evolved in commercial greenhouse populations of the cabbage looper, Trichoplusia ni (7, 17).We compared responses to single toxins and formulations of B. thuringiensis by two resistant strains (GipBtR and GlenBtR) and two related susceptible strains (GipS and GlenS) of T. ni. All four strains were started by the collection of larvae in 2001 from commercial greenhouses near Vancouver in British Columbia, Canada (7). Resistance evolved in the greenhouses in response to repeated sprays of DiPel (7), a formulation of B. thuringiensis subsp. kurstaki strain HD1 containing Cry1Aa, Cry1Ab, Cry1Ac, and Cry2Aa (9). Previously reported concentrations required to kill 50% of larvae (LC50s) indicated that, relative to a susceptible laboratory strain, initial resistance to DiPel was 113-fold in the Gip population (labeled T2c in reference 7) and 24-fold in the Glen population (labeled P5 in reference 7).We reared larvae on a wheat germ diet (5) at 26°C on a light-to-dark schedule of 16 h:8 h. GipS and GlenS were reared on diet without B. thuringiensis toxins, which allowed resistance to decline (7). To maintain resistance, GipBtR and GlenBtR were reared each generation on a diet treated with 5 or 10 mg of DiPel WP (Abbott Laboratories, Ontario, Canada) per milliliter of diet (7). In bioassays, groups of five third-instar larvae were put in 60-ml plastic cups containing diet, and mortality was assessed after 3 days by gently probing larvae for movement.We used diet overlay bioassays to evaluate the toxicity to GipBtR and GipS of the protoxin forms of Cry1Ab, Cry1Ac, Cry1AbMod, and Cry1AcMod produced in B. thuringiensis strains (12). Cry1AbMod and Cry1AcMod are genetically engineered variants of Cry1Ab and Cry1Ac, respectively, each lacking 56 amino acids from the amino-terminal region, including helix α-1 (12). An 80-μl aliquot containing distilled water and toxin was dispensed evenly over the surfaces of 2 ml of diet (a mean surface area of 7.1 cm2) and allowed to dry. Fifty to 200 larvae from each strain were tested at five to eight concentrations of each toxin.We used diet incorporation bioassays (7) to evaluate the toxicities of DiPel and Agree WG (Certis, Columbia, MD) to GipS, GipBtR, GlenS, and GlenBtR. Agree is a formulation of hybrid strain GC91, which was created from the conjugation-like transfer of a plasmid from B. thuringiensis subsp. kurstaki strain HD191 into B. thuringiensis subsp. aizawai strain HD135, and it contains Cry1Ac, Cry1C, and Cry1D (1, 8). DiPel and Agree were diluted in distilled water and mixed into diet (7). Twenty-five to 50 larvae from each strain were tested at six to seven concentrations of DiPel and Agree.We used probit analysis (13) to estimate the LC50s and their 95% fiducial limits (FL), as well as the slopes of concentration-mortality lines and their standard errors. The mortality of larvae fed treated diet was not adjusted for the mortality of control larvae on untreated diet, because the control mortality was low (mean, 3.6%; range, 0 to 16%). LC50s with nonoverlapping 95% FL are significantly different. Resistance ratios were calculated as the LC50 of a resistant strain (GipBtR or GlenBtR) divided by the LC50 of its susceptible counterpart (GipS or GlenS).The genetically modified toxins Cry1AbMod and Cry1AcMod were much more effective than the native toxins Cry1Ab and Cry1Ac against larvae of T. ni from the resistant GipBtR strain (Table (Table1).1). Resistance ratios of GipBtR were 580 for Cry1Ab and 1,400 for Cry1Ac but only 5.5 for Cry1AbMod and 9.3 for Cry1AcMod (Table (Table1).1). Against GipBtR, the LC50 was 53-fold higher for Cry1Ab than for Cry1AbMod and 11-fold higher for Cry1Ac than for Cry1AcMod (Table (Table1).1). Against GipS, however, the LC50 was 2-fold higher for Cry1AbMod than for Cry1Ab and 14-fold higher for Cry1AcMod than for Cry1Ac (Table (Table11).

TABLE 1.

Responses of resistant (GipBtR and GlenBtR) and susceptible (GipS and GlenS) strains of T. ni to native toxins (Cry1Ab and Cry1Ac), modified toxins (Cry1AbMod and Cry1AcMod), and formulations (DiPel and Agree)
Toxin or formulationStrainNo. of larvaeLC50 (95% FL)aSlope ± SEResistance ratiob
Cry1AbGipBtR400180 (59-2,900)c0.41 ± 0.09580
GipS3760.30 (0.21-0.41)0.56 ± 0.06
Cry1AbModGipBtR4003.4 (2.6-4.6)0.52 ± 0.055.5
GipS3750.62 (0.51-0.75)0.99 ± 0.09
Cry1AcGipBtR60054 (35-110)d0.50 ± 0.071,400
GipS1,4500.038 (0.031-0.046)0.44 ± 0.02
Cry1AcModGipBtR6005.1 (4.4-5.8)0.85 ± 0.069.3
GipS1,1450.55 (0.47-0.64)0.60 ± 0.03
DiPelGipBtR12566 (21-420,000)e0.43 ± 0.17370
GipS1250.18 (0.08-0.27)0.73 ± 0.16
AgreeGipBtR3004.9 (3.6-7.7)0.81 ± 0.129.9
GipS3000.49 (0.42-0.57)1.4 ± 0.14
DiPelGlenBtR1503.2 (2.7-3.9)1.9 ± 0.2726
GlenS1250.13 (0.05-0.17)1.5 ± 0.44
AgreeGlenBtR3002.0 (1.7-2.4)1.2 ± 0.125.9
GlenS2950.34 (0.29-0.39)1.4 ± 0.17
Open in a separate windowaConcentration that killed 50% and its 95% FL in mg protoxin per cm2 diet for toxins and mg formulation per ml of diet for DiPel and Agree.bLC50 of the resistant strain divided by the LC50 of the related susceptible strain for each toxin or formulation.cTotal of 17% mortality at the highest toxin concentration tested (17 mg protoxin/cm2 diet).dTotal of 35% mortality at the highest toxin concentration tested (23 mg protoxin/cm2 diet).eTotal of 24% mortality at the highest toxin concentration tested (15 mg DiPel/ml diet).Agree was more effective than DiPel against the two resistant strains GipBtR and GlenBtR (Table (Table1).1). Resistance ratios for DiPel were 370 for GipBtR and 26 for GlenBtR compared to resistance ratios for Agree, which were 9.9 for GipBtR and 5.9 for GlenBtR (Table (Table1).1). For the two resistant strains, LC50s were higher for DiPel than for Agree (13-fold higher against GipBtR and 1.6-fold higher against GlenBtR) (Table (Table1).1). Conversely, against the two susceptible strains, the LC50s were higher for Agree than for DiPel (2.7-fold higher against GipBtR and 2.6-fold higher against GlenBtR).The resistant GipBtR strain examined here (Table (Table1)1) and the resistant GLEN-Cry1Ac-BCS strain of T. ni studied by Wang et al. (17) had >500-fold resistance to Cry1Ab and Cry1Ac. Both GipBtR and GLEN-Cry1Ac-BCS were derived from greenhouse populations of T. ni that had been sprayed repeatedly with DiPel (7, 17), which contains Cry1Ab and Cry1Ac but not Cry1C or Cry1D (9). The GLEN-Cry1Ac-BCS strain had cross-resistance of only 2.5-fold to Cry1C and 2.4-fold to Cry1D (17). Agree contains Cry1C and Cry1D (8), which probably boosted its efficacy against GipBtR and GlenBtR (Table (Table11).The results here with Cry1AbMod and Cry1AcMod extend those of previous work indicating that modified toxins killed larvae of Manduca sexta in which susceptibility to Cry1Ab was decreased via RNA interference and also killed larvae of Pectinophora gossypiella that had laboratory-selected, genetically based resistance to Cry1Ab and Cry1Ac (12). The efficacy of Cry1AbMod and Cry1AcMod against greenhouse-selected T. ni suggests that the modified toxins may be useful against resistance that evolves in commercial agricultural settings. The results here also increase the number of lepidopteran species against which the modified toxins were effective to three, with each species representing a different family (Sphingidae, Gelechiidae, and Noctuidae). In the two other species, decreased susceptibility to native Cry1A toxins was mediated by alterations in a cadherin protein that binds Cry1Ac (2, 11, 12), whereas the role of cadherin in T. ni resistance has not been demonstrated or excluded.Similar to patterns observed with P. gossypiella (12), modified toxins were more effective than native toxins against resistant T. ni larvae, but native toxins were more effective than modified toxins against susceptible T. ni larvae (Table (Table1).1). This raises the intriguing possibility that combinations of native and modified toxins might be especially effective against populations with a mixture of susceptible and resistant individuals. In any case, the Cry1AMod toxins and hybrid B. thuringiensis products applied either jointly or separately may be useful for countering or delaying evolution of resistance in T. ni. However, further work is needed to determine how native and modified toxins interact when used in combination and how modified toxins perform in the greenhouse and field.  相似文献   

15.
A gene designated cyt1Ab1, encoding a 27,490-Da protein, was isolated from Bacillus thuringiensis subsp. medellin (H30 serotype) by using an oligonucleotide probe corresponding to the cyt1Aa1 gene. The sequence of the Cyt1Ab1 protein, as deduced from the sequence of the cyt1Ab1 gene, was 86% identical to that of the Cyt1Aa1 protein and 32% identical to that of the Cyt2Aa1 protein from B. thuringiensis subsp. kyushuensis. The cyt1Ab1 gene was flanked upstream by a p21 gene, in the same orientation, encoding a 21,370-Da protein that showed 84% similarity to the putative chaperone P20 protein from B. thuringiensis subsp. israelensis and downstream, on the opposite strand, by a sequence showing 85% identity to the IS240A insertion sequence. The cyt1Ab1 gene was expressed at a high level in a nontoxic strain of B. thuringiensis subsp. israelensis in which large inclusions of the Cyt1Ab1 protein were produced. Purified Cyt1Ab1 crystals were as hemolytic as those of the Cyt1Aa1 protein and were twice as hemolytic as those from the wild-type strain. Mosquitocidal activity toward Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae was assayed. The toxicity of the Cyt1Ab1 protein was slightly lower than that of the Cyt1Aa1 protein for all three mosquito species, and Cyt1Ab1 was 150, 300, and 800 times less active toward Culex, Anopheles, and Aedes larvae, respectively, than were the native crystals from B. thuringiensis subsp. medellin.  相似文献   

16.
Xanthomonas citri ssp. citri (Xcc) is the causal agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. A biofilm‐deficient mutant was identified in a screening of a transposon mutagenesis library of the Xcc 306 strain constructed using the commercial Tn5 transposon EZ‐Tn5 <KAN‐2> Tnp Transposome (Epicentre). Sequence analysis of a mutant obtained in the screening revealed that a single copy of the EZ‐Tn5 was inserted at position 446 of hrpM, a gene encoding a putative enzyme involved in glucan synthesis. We demonstrate for the first time that the product encoded by the hrpM gene is involved in β‐1,2‐glucan synthesis in Xcc. A mutation in hrpM resulted in no disease symptoms after 4 weeks of inoculation in lemon and grapefruit plants. The mutant also showed reduced ability to swim in soft agar and decreased resistance to H 2 O 2 in comparison with the wild‐type strain. All defective phenotypes were restored to wild‐type levels by complementation with the plasmid pBBR1‐MCS containing an intact copy of the hrpM gene and its promoter. These results indicate that the hrpM gene contributes to Xcc growth and adaptation in its host plant.  相似文献   

17.
Xanthomonas citri ssp. citri (Xcc) causes citrus canker, one of the most economically damaging diseases affecting citrus worldwide. Biofilm formation is important for the pathogen to survive epiphytically in planta prior to the induction of canker symptoms. In this study, two EZ-Tn5 transposon mutants of Xcc strain 306, affected in biofilm formation, were isolated; subsequent analyses led to the identification of a novel gene locus XAC3596 (designated as wxacO), encoding a putative transmembrane protein, and the rfbC gene, encoding a truncated O-antigen biosynthesis protein. Sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed that lipopolysaccharide (LPS) biosynthesis was affected in both wxacO and rfbC mutants. The wxacO mutant was impaired in the formation of a structured biofilm on glass or host plant leaves, as shown in confocal laser scanning microscopy analysis of strains containing a plasmid expressing the green fluorescent protein. Both wxacO and rfbC mutants were more sensitive than the wild-type strain to different environmental stresses, and more susceptible to the antimicrobial peptide polymyxin B. The two mutants were attenuated in swimming motility, but not in flagellar formation. The mutants also showed reduced virulence and decreased growth on host leaves when spray inoculated. The affected phenotypes of the wxacO and rfbC mutants were complemented to wild-type levels by the intact wxacO and rfbC genes, respectively. This report identifies a new gene influencing LPS production by Xcc. In addition, our results suggest that a structurally intact LPS is critical for survival in the phyllosphere and for the virulence of Xcc.  相似文献   

18.
Adhesion to host tissue is one of the key steps of the bacterial pathogenic process. Xanthomonas citri ssp. citri possesses a non‐fimbrial adhesin protein, XacFhaB, required for bacterial attachment, which we have previously demonstrated to be an important virulence factor for the development of citrus canker. XacFhaB is a 4753‐residue‐long protein with a predicted β‐helical fold structure, involved in bacterial aggregation, biofilm formation and adhesion to the host. In this work, to further characterize this protein and considering its large size, XacFhaB was dissected into three regions based on bioinformatic and structural analyses for functional studies. First, the capacity of these protein regions to aggregate bacterial cells was analysed. Two of these regions were able to form bacterial aggregates, with the most amino‐terminal region being dispensable for this activity. Moreover, XacFhaB shows features resembling pathogen‐associated molecular patterns (PAMPs), which are recognized by plants. As PAMPs activate plant basal immune responses, the role of the three XacFhaB regions as elicitors of these responses was investigated. All adhesin regions were able to induce basal immune responses in host and non‐host plants, with a stronger activation by the carboxyl‐terminal region. Furthermore, pre‐infiltration of citrus leaves with XacFhaB regions impaired X. citri ssp. citri growth, confirming the induction of defence responses and restraint of citrus canker. This work reveals that adhesins from plant pathogens trigger plant defence responses, opening up new pathways for the development of protective strategies for disease control.  相似文献   

19.
The ability of several Bacillus thuringiensis strains to colonize plant surfaces was assessed and compared with that of more common epiphytic bacteria. While all B. thuringiensis strains multiplied to some extent after inoculation on bean plants, their maximum epiphytic population sizes of 106 cfu/g of leaf were always much less than that achieved by other resident epiphytic bacteria or an epiphytically fit Pseudomonas fluorescens strain, which attained population sizes of about 107 cfu/g of leaf. However B. thuringiensis strains exhibited much less decline in culturable populations upon imposition of desiccation stress than did other resident bacteria or an inoculated P. fluorescens strain, and most cells were in a spore form soon after inoculation onto plants. B. thuringiensis strains produced commercially for insect control were not less epiphytically fit than strains recently isolated from leaf surfaces. The growth of B. thuringiensis was not affected by the presence of Pseudomonas syringae when co-inoculated, and vice versa. B. thuringiensis strains harboring a green fluorescent protein marker gene did not form large cell aggregates, were not associated with other epiphytic bacteria, and were not found associated with leaf structures, such as stomata, trichomes, or veins when directly observed on bean leaves by epifluorescent microscopy. Thus, B. thuringiensis appears unable to grow extensively on leaves and its common isolation from plants may reflect immigration from more abundant reservoirs elsewhere.  相似文献   

20.
Characterization of a dynamic S layer on Bacillus thuringiensis.   总被引:5,自引:3,他引:2       下载免费PDF全文
The surfaces of three Bacillus thuringiensis strains possess an S layer composed of linear arrays of small particles arranged with p2 symmetry and with a = 8.5 nm, b = 7.2 nm, and gamma = 73 degrees. Platinum shadows of whole cells and S-layer fragments revealed the outer surface of the array to be smooth and the inner surface to be corrugated. Treatment with 2 M guanidine hydrochloride at pH 2.5 to 4 best removed the S layer for chemical characterization; it was a relatively hydrophilic 91.4-kilodalton protein with a pI of 5, no detectable carbohydrate, cysteine, methionine or tryptophan, and 21.2% nonpolar residues. No N-terminal homology with other S-layer proteins was evident. Antibody labeling experiments confirmed that the amount of S layer was proportional to the growth phase in broth cultures. Late-exponential- and stationary-growth-phase cells typically sloughed off fragments of S layer, and this may be the result of wall turnover. Indigenous autolytic activity in isolated walls rapidly digested the wall fabric, liberating soluble S-layer protein. At the same time, proteases frequently reduced the molecular weight of the 91.4-kilodalton protein, but these polypeptides could still be identified as S-layer components by immunoblotting. As cultures were serially subcultured, the frequency of appearance of the S layer diminished, and it was eventually lost. The dynamic nature of this S layer makes it atypical of most previously identified S layers and made it unusually difficult to characterize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号