首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Amiodarone is an antiarrhythmic drug which has received considerable attention in recent years. It has been suggested that the unusual pharmacodynamic characteristics of this drug may be due in part to the influence of active metabolites. Using fast atom bombardment (FAB) mass spectrometry we have identified a new metabolite of amiodarone, the di-N-desethyl analog (DDEA). This metabolite was present in the blood of dogs treated with the parent drug, and showed a greater affinity for myocardium than did the parent drug. The unique features of FAB mass spectrometry over electron impact mass spectrometry was an essential element in facilitating the identification of this new metabolite. Whether or not this metabolite has pharmacologic activity or is responsible for some of the side effects occurring during amiodarone administration is not known.  相似文献   

2.
Mature bovine lenses contain 75-100 microM of a previously unidentified nucleoside polyphosphate. Using (31)P NMR spectroscopy we have identified this compound as diadenosine-5',5'-triphosphate. The accumulation of this compound in the lens may be a consequence of the high levels of activities of t-RNA synthetases during lens differentiation and growth. The function, if any, of this compound in the bovine lenses is presently unknown.  相似文献   

3.
Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.  相似文献   

4.
The purpose of the present study was to measure the pattern of uptake of75Se into proteins in normal rat lenses and into the proteins of lenses with selenite-induced cataract. Ten-day-old suckling rats received a single injection of75Se with or without a cataractous dose of cold carrier sodium selenite. Four days after injection, the proteins from excised lenses were counted for75Se radioactivity and subjected to gel permeation chromatography, amino acid analyses, and mass spectrometry. All three soluble crystallin lens proteins took up75Se in both normal and cataractous lenses. However, cataractous lenses did not take up75Se into a soluble protein in which major quantities of75Se were taken up in normal rats. Futhermore,75Se in the gamma-crystallins was associated with an unusual acidic amino acid. It was concluded that selenium metabolism by lens proteins may be unusual compared to other soft tissues.  相似文献   

5.
Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.  相似文献   

6.
The antitumor fungal metabolite terrequinone A, identified in extracts of Aspergillus sp., is biosynthesized by the five-gene cluster tdiA-tdiE. In this work, we have overproduced all five proteins (TdiA-TdiE) in the bacterial host Escherichia coli, fully reconstituting the biosynthesis of terrequinone A. This pathway involves aminotransferase activity, head-to-tail dimerization and bisprenylation of the scaffold to yield the benzoquinone natural product. We have established that TdiD is a pyridoxal-5'-phosphate-dependent L-tryptophan aminotransferase that generates indolepyruvate for an unusual nonoxidative coupling by the tridomain nonribosomal peptide synthetase TdiA. TdiC, an NADH-dependent quinone reductase, generates the nucleophilic hydroquinone for two distinct rounds of prenylation by the single prenyltransferase TdiB. TdiE is required to shunt the benzoquinone away from an off-pathway monoprenylated species by an as yet unknown mechanism. Overall, we have biochemically characterized the complete biosynthetic pathway to terrequinone A, highlighting the nonoxidative dimerization pathway and the unique asymmetric prenylation involved in its maturation.  相似文献   

7.
Shed'ko MB 《Parazitologiia》2003,37(2):118-126
Autopsies of Abbottina rivularis from southern Primorye (drainage-basin of Artyomovka River, Razdolnaya River and Khanka Lake) and southern Sakhalin Island (Maloye Chibisanskoye Lake) revealed high indices of diplostomum-infected lenses of these fishes. The metacercariae have been identified as Diplostomum parviventosum Dubois, 1932, D. huromense (La Rue, 1927), D. helveticum (Dubois, 1929), D. mergi Dubois, 1932, Diplostomum sp. The most lenses of parasitized eyes possessed dorsally situated sperical protrusions of the lens capsule ("cyst"). Earlier, this phenomenon was found by Larson (1965) in naturally infected bullheads (Ictalurus). The metacercarial infection level and its dynamics, age-composition of metacercariae in both lenses and "cysts", and "cysts" production are discussed.  相似文献   

8.
The polyketide toxin dothistromin is very similar in structure to the aflatoxin precursor, versicolorin B. Dothistromin is made by a pine needle pathogen, Dothistroma septosporum, both in culture and in planta. Orthologs of aflatoxin biosynthetic genes have been identified that are required for dothistromin biosynthesis in D. septosporum. In contrast to the situation in aflatoxin-producing fungi where 25 aflatoxin biosynthetic and regulatory genes are tightly clustered in one region of the genome, the dothistromin gene cluster is fragmented. Three mini-clusters of dothistromin genes have been identified, each located on a 1.3-Mb chromosome and each grouped with non-dothistromin genes. There are no obvious patterns of repeated sequences or transposon relics to suggest recent recombination events. Most dothistromin genes within the mini-clusters are co-regulated, suggesting that coordinate control of gene expression is achieved despite this unusual arrangement of secondary metabolite biosynthetic genes.  相似文献   

9.
Vertebrate eye lenses mostly contain two abundant types of proteins, the alpha-crystallins and the beta/gamma-crystallins. In addition, certain housekeeping enzymes are highly expressed as crystallins in various taxa. We now observed an unusual approximately 41-kd protein that makes up 16% to 18% of the total protein in the platypus eye lens. Its cDNA sequence was determined, which identified the protein as muscle-type lactate dehydrogenase A (LDH-A). It is the first observation of LDH-A as a crystallin, and we designate it upsilon (upsilon)-crystallin. Interestingly, the related heart-type LDH-B occurs as an abundant lens protein, known as epsilon-crystallin, in many birds and crocodiles. Thus, two members of the ldh gene family have independently been recruited as crystallins in different higher vertebrate lineages, suggesting that they are particularly suited for this purpose in terms of gene regulatory or protein structural properties. To establish whether platypus LDH-A/upsilon-crystallin has been under different selective constraints as compared with other vertebrate LDH-A sequences, we reconstructed the vertebrate ldh-a gene phylogeny. No conspicuous rate deviations or amino acid replacements were observed.  相似文献   

10.
The urinary extract of a child investigated because of strabismus was found to contain large amounts of a compound which was identified using gas chromatography/mass spectrometry as 2-deoxyerythropentono-1,4-lactone. This lactone has not been observed previously in urinary extracts. When ion-exchange chromatography was used to isolate the organic acids from urine, the major peaks obtained by gas chromatography were shown to be 2-deoxyerythropentonic acid, 2-deoxyerythropentono-1,5-lactone and 2-deoxyerythropentono-1,4,lactone. Another abnormal metabolite, 2-deoxyribitol, was also excreted by the patient although this compound could not be detected in the urine of normal children. It is proposed that these unusual compounds accumulate in the urine of this child as a result of a defect in the catabolism of 2-deoxyribose.  相似文献   

11.
Fan J  Dong L  Mishra S  Chen Y  FitzGerald P  Wistow G 《The FEBS journal》2012,279(16):2892-2904
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.  相似文献   

12.
Ligon J  Hill S  Beck J  Zirkle R  Molnár I  Zawodny J  Money S  Schupp T 《Gene》2002,285(1-2):257-267
A genomic DNA region of over 80 kb that contains the complete biosynthetic gene cluster for the synthesis of the antifungal polyketide metabolite soraphen A was cloned from Sorangium cellulosum So ce26. The nucleotide sequence of the soraphen A gene region, including 67,523 bp was determined. Examination of this sequence led to the identification of two adjacent type I polyketide synthase (PKS) genes that encode the soraphen synthase. One of the soraphen A PKS genes includes three biosynthetic modules and the second contains five additional modules for a total of eight. The predicted substrate specificities of the acyltransferase (AT) domains, as well as the reductive loop domains identified within each module, are consistent with expectations from the structure of soraphen A. Genes were identified in the regions flanking the two soraphen synthase genes that are proposed to have roles in the biosynthesis of soraphen A. Downstream of the soraphen PKS genes is an O-methyltransferase (OMT) gene. Upstream of the soraphen PKS genes there is a gene encoding a reductase and a group of genes that are postulated to have roles in the synthesis of methoxymalonyl-acyl carrier protein (ACP). This unusual extender unit is proposed to be incorporated in two positions of the soraphen polyketide chain. One of the genes in this group contains distinct domains for an AT, an ACP, and an OMT.  相似文献   

13.
Age-related nuclear (ARN) cataract is a major cause of world blindness. With the onset of ARN cataract, the normally transparent and colorless lens becomes opaque and can take on colors ranging from orange, brown, and even black. The molecular basis for this remarkable transformation is unknown. ARN cataract is also characterized by extensive oxidation, insolubilization, and cross-linking of polypeptides, particularly in the nucleus of the lens. It has been postulated that 3-hydroxykynurenine (3OHKyn) may be involved in these changes. This endogenous tryptophan metabolite is readily oxidized and is involved in the tanning of moth cocoons and the formation of pigments in the eyes of butterflies. 3OHKyn is a component of our primate-specific UV-filter pathway, and the brownish hue of ARN cataract lenses is also unique to humans. Because numerous colored compounds can be produced by autoxidation of 3OHKyn, this process could provide an explanation for the variety of lens colors and other changes seen in ARN cataract. For such a theory to be tenable, it needs to be demonstrated that 3OHKyn is bound to proteins in the human lens. Here, we show that all normal lenses older than 50 have 3OHKyn covalently attached to the nuclear proteins, most likely via cysteine residues. If indeed 3OHKyn is implicated in ARN cataract, a reduction in the levels that are bound in cataract, compared to normal lenses, would be expected. In agreement with this hypothesis, no bound 3OHKyn could be detected in proteins isolated from ARN cataract lenses.  相似文献   

14.
Bacteria have been isolated with the ability to use 3-chloroquinoline-8-carboxylic acid as sole source of carbon and energy. According to their physiological properties, these bacteria have been classified as Pseudomonas spec. Two metabolites of the degradation pathway have been isolated and identified. The first metabolite was 3-(3-carboxy-3-oxopropenyl)-2-hydroxy-5-chloropyridine, the meta-cleavage product of 3-chloro-7,8-dihydroxyquinoline. The second metabolite, 5-chloro-2-hydroxynicotinic acid, was not further metabolized by this organisms.  相似文献   

15.
YH439 is a potential drug candidate for the treatment of various hepatic disorders. YH439 and its three metabolites have been identified in rat urine by liquid chromatography–mass spectrometry (LC–MS) and by gas chromatography (GC)–MS. Identification of YH439 and its metabolites was established by comparing their GC retention times and mass spectra with those of the synthesized authentic standards. Both electron impact- and positive chemical ionization MS have been evaluated. The metabolism study was performed in the rat using oral administration of the drug. A major metabolite (YH438) was identified as the N-dealkylation product of YH439. Other identified metabolites were caused by the loss of the methyl thiazolyl amine group (metabolite II) from YH439, the isopropyl hydrogen malonate group (metabolite IV) and the decarboxylated product (metabolite III) of metabolite II.  相似文献   

16.
Metabolic profiling of tissues needs special attention, because the compartmentalization of cellular constituents will be abolished by sample homogenization. This loss of partitioning leads to protein and metabolite instability in extracts, and therefore metabolite extraction protocols need to ensure very rapid inactivation of macromolecules as well as solubilization of metabolites. There are many published methods for tissue metabolome analysis, but no universally accepted standard, and a lack of measurable quality benchmarks. We developed a protocol for efficient tissue disruption and metabolite extraction of the earthworm Lumbricus rubellus guided by prior biological knowledge as well as metrics based on the data. In particular, we identified an unusual degree of instability of L. rubellus tissue extracts, and evaluated different approaches such as heating and filtration to counteract this. Finally, we evaluated four different solvent systems for comprehensive metabolite extraction using three analytical platforms (1H NMR spectroscopy, GC?CMS, and direct-infusion FT-ICR-MS), and also compared bead-beating and cryogenic milling for tissue disruption. Initially we ranked methods by common analytical criteria (e.g. numbers and total intensity of detected peaks) in order to compare protocols. These approaches to assess protocol suitability proved to be inadequate to judge earthworm tissue extraction methods because of sample instability. Existing tissue extraction protocols should not be assumed to be automatically applicable to novel species.  相似文献   

17.
Benzo(a)pyrene metabolites were isolated after incubation of [14C]-benzo(a)pyrene with the green alga, Selenastrum capricornutum. A significant amount of radioactivity chromatographed in the dihydrodiol region which did not coelute with any of the previously identified dihydrodiol metabolites isolated from this system. Following characterization by mass spectrometry, fluorescence spectroscopy, and high pressure liquid chromatography, this metabolite was identified as the cis-11,12-dihydro-11,12-dihydroxybenzo(a)pyrene. This metabolite has not been identified previously as a metabolite formed in a plant system.  相似文献   

18.
Kose S  Imamoto N  Yoneda Y 《FEBS letters》1999,453(3):327-330
Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  相似文献   

19.
Prokaryotes use subcellular compartments for a variety of purposes. An intriguing example is a family of complex subcellular organelles known as bacterial microcompartments (MCPs). MCPs are widely distributed among bacteria and impact processes ranging from global carbon fixation to enteric pathogenesis. Overall, MCPs consist of metabolic enzymes encased within a protein shell, and their function is to optimize biochemical pathways by confining toxic or volatile metabolic intermediates. MCPs are fundamentally different from other organelles in having a complex protein shell rather than a lipid‐based membrane as an outer barrier. This unusual feature raises basic questions about organelle assembly, protein targeting and metabolite transport. In this review, we discuss the three best‐studied MCPs highlighting atomic‐level models for shell assembly, targeting sequences that direct enzyme encapsulation, multivalent proteins that organize the lumen enzymes, the principles of metabolite movement across the shell, internal cofactor recycling, a potential system of allosteric regulation of metabolite transport and the mechanism and rationale behind the functional diversification of the proteins that form the shell. We also touch on some potential biotechnology applications of an unusual compartment designed by nature to optimize metabolic processes within a cellular context.  相似文献   

20.
Alkyldihydroxyacetonephosphate is the building block for the biosynthesis of ether phospholipids, which are essential components of eukaryotic cell membranes and are involved in a variety of signaling processes. The metabolite is synthesized by alkyldihydroxyacetonephosphate synthase (ADPS), a peroxisomal flavoenzyme. Deficiency in ADPS activity causes rhizomelic chondrodysplasia punctata type 3, a very severe genetic disease. ADPS is unusual in that it uses a typical redox cofactor such as FAD to catalyze a non-redox reaction. With the goal of undertaking a structural investigation of the enzyme, we have characterized recombinant ADPS from different sources: Cavia porcellus, Drosophila melanogaster, Homo sapiens, Archaeoglobus fulgidus, and Dictyostelium discoideum. The protein from D. discoideum was found to be the best candidate for structural studies. We describe a protocol for expression and purification of large amounts of pure and stable enzyme in its holo (FAD-bound) form. A search of deletion mutants identified a protein variant that forms crystals diffracting up to 2A resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号