首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.

Blackbuck (Antilope cervicapra) is a threatened species endemic to the Indian subcontinent. Many populations of blackbuck are found in southern India. Populations of blackbuck are negatively affected in many places for various reasons, such as habitat destruction and poaching. Their range decreased sharply during the 20th century. There is very limited information available on the population dynamics of blackbuck in southern India. For the phylogenetic and genetic diversity analyses of blackbuck populations among different distribution ranges in southern India, we sequenced mt DNA of cytochrome b (Cyt b) for 120, cytochrome c oxidase subunit-1 (COI) for 137 and the control region (CR) for 137 fecal pellets from eleven different locations in southern India. We analyzed the genetic structure of three mitochondrial markers, the CR, Cyt b and the COI region, separately and in a combined dataset. The haplotype diversity and nucleotide diversity of CR were 0.969 and 0.047, respectively, and were higher than those of Cyt b and COI. A Bayesian phylogeny and an MJ network based on the CR and combined dataset (105 sequences) signified several distinct haplotype clusters within blackbuck, whereas no clusters were identified with the Cyt b and COI phylogenetic analyses. The analysis of molecular variance of the combined data set revealed 52.46% genetic variation within the population. Mismatch distribution analysis revealed that blackbuck populations underwent complex changes with analysis of the combined dataset in each population and analysis of each marker separately in the overall population. The results provide evidence that blackbuck in different geographic locations has a distinct population structure due to habitat fragmentation after the formation of the Western and Eastern Ghats.

  相似文献   

2.
Phylogenetic analyses provide information that can be useful in the conservation of genetic variation by identifying intraspecific genetic structure. Reconstruction of phylogenetic relationships requires the use of markers with the appropriate amount of variation relative to the timeframe and purpose of the study. Here, genetic structure and clustering are inferred from comparative analyses of three widely used mitochondrial markers, the CR, cytb and the COI region, merged and separately, using Eurasian reindeer as a model. A Bayesian phylogeny and a MJ network, both based on the merged dataset, indicate several distinct maternal haplotype clusters within Eurasian reindeer. In addition to confirm previously described clusters, two new subclusters were found. When comparing the results from the merged dataset with the results from analyses of the three markers separately, similar clustering was found in the CR and COI phylogenies, whereas the cytb region showed poor resolution. Phylogenetic analyses of the merged dataset and the CR revealed congruent results, implying that single sequencing analysis of the CR is an applicable method for studying the haplotype structure in Eurasian reindeer.  相似文献   

3.
Mitochondrial DNA (mtDNA) sequences of the COI gene and the control region were used to examine the genetic population structure of Aglais urticae L. (Lepidoptera) over its entire geographic range, i.e., the Palaearctic. The phylogenetic relationships within and between A. urticae subspecies were determined and patterns of mtDNA divergence and ecological differentiation were compared. High gene flow together with a recent and sudden population expansion characterise the genetic population structure of this species. No geographically induced differentiation was observed, nor were subspecies identified as separate evolutionary units. The discrepancy between the genetic and ecological variation is most likely due to the slower rate of mtDNA evolution compared to ecological differentiation. The control region proved to be a less useful molecular marker for the population genetics and the phylogenetic reconstruction of closely related taxa in A. urticae than it has for other species. The extreme bias in adenine and thymine content (A+T=90.91%) probably renders this region highly susceptible to homoplasy, resulting in a less informative molecular marker.  相似文献   

4.
The genus Anicetus includes economically important biocontrol agents that are introduced for control of soft and wax scale insect agricultural pests (Ceroplastes spp.). Understanding of host–parasitoid associations is critical to the successful outcome of their utilization in biological control projects. However, identification of these parasitoids is often difficult because of their small size and generally similar morphological features, and hence, studies on the host–parasitoid associations. Here, nucleotide sequence data were generated from the mitochondrial COI gene and the D2 region of 28S rRNA to assess genetic variation within and between species of Anicetus occurring in China. The results of this study support the use of the COI and the D2 region of 28S rRNA gene as useful markers in separating species of Anicetus, even in cases where morphological differences are subtle. On the other hand, the COI gene is also useful in recognizing species with much variation in morphology. DNA barcoding reveals high levels of host specificity of endoparasitoids wasps in the genus Anicetus. Our results indicate that each Anicetus species is adapted to a limited set of host species, or even are monospecific in their host choice.  相似文献   

5.
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.  相似文献   

6.
The validity of the synonymy of Prodontria modesta (Broun) and the nationally endangered Prodontria bicolorata Given, both flightless with very restricted distributions in Central Otago, New Zealand, was investigated using molecular phylogenetic analyses of a section of the mitochondrial gene region coding for cytochrome oxidase subunit 1 (COI) and nuclear rDNA internal transcribed spacer region (ITS1). Maximum likelihood analysis of the COI data found no separate, monophyletic lineages linked to colour form among six populations of the beetle and the genetic variation observed was less than that recorded within many other beetle species, including other melolonthines. The synonymisation of P. bicolorata with P. modesta should be considered valid and conservation efforts should focus on protecting habitats and populations, rather than on preserving colour forms.  相似文献   

7.
The unambiguous identification of phreatoicidean isopods occurring in the mountainous southwestern region of South Africa is problematic, as the most recent key is based on morphological characters showing continuous variation among two species: Mesamphisopus abbreviatus and M. depressus. This study uses variation at 12 allozyme loci, phylogenetic analyses of 600 bp of a COI (cytochrome c oxidase subunit I) mtDNA fragment and morphometric comparisons to determine whether 15 populations are conspecific, and, if not, to elucidate their evolutionary relationships. Molecular evidence suggested that the most easterly population, collected from the Tsitsikamma Forest, was representative of a yet undescribed species. Patterns of differentiation and evolutionary relationships among the remaining populations were unrelated to geographic proximity or drainage system. Patterns of isolation by distance were also absent. An apparent disparity among the extent of genetic differentiation was also revealed by the two molecular marker sets. Mitochondrial sequence divergences among individuals were comparable to currently recognized intraspecific divergences. Surprisingly, nuclear markers revealed more extensive differentiation, more characteristic of interspecific divergences. This disparity and the mosaic pattern of differentiation may be driven by stochastic population crashes and genetic bottlenecks (caused by seasonal habitat fluctuations), coupled with genetic drift.  相似文献   

8.
The 5' region of the mitochondrial DNA (mtDNA) gene cytochrome c oxidase I (COI) is the standard marker for DNA barcoding. However, because COI tends to be highly variable in amphibians, sequencing is often challenging. Consequently, another mtDNA gene, 16S rRNA gene, is often advocated for amphibian barcoding. Herein, we directly compare the usefulness of COI and 16S in discriminating species of hynobiid salamanders using 130 individuals. Species identification and classification of these animals, which are endemic to Asia, are often based on morphology only. Analysis of Kimura 2-parameter genetic distances (K2P) documents the mean intraspecific variation for COI and 16S rRNA genes to be 1.4% and 0.3%, respectively. Whereas COI can always identify species, sometimes 16S cannot. Intra- and interspecific genetic divergences occasionally overlap in both markers, thus reducing the value of a barcoding gap to identify genera. Regardless, COI is the better DNA barcoding marker for hynobiids. In addition to the comparison of two potential markers, high levels of intraspecific divergence in COI (>5%) suggest that both Onychodactylus fischeri and Salamandrella keyserlingii might be composites of cryptic species.  相似文献   

9.
Genetic divergence and speciation in plant-feeding insects could be driven by contrasting selection pressures imposed by different plant species and taxa. While numerous examples of host-associated differentiation (HAD) have been found, the overall importance of HAD in insect diversification remains unclear, as few studies have investigated its frequency in relation to all speciation events. One promising way to infer the prevalence and repeatability of HAD is to estimate genetic differentiation in multiple insect taxa that use the same set of hosts. To this end, we measured and compared variation in mitochondrial COI and nuclear ITS2 sequences in population samples of leaf-galling Pontania and bud-galling Euura sawflies (Hymenoptera: Tenthredinidae) collected from six Salix species in two replicate locations in northern Fennoscandia. We found evidence of frequent HAD in both species complexes, as individuals from the same willow species tended to cluster together on both mitochondrial and nuclear phylogenetic trees. Although few fixed differences among the putative species were found, hierarchical AMOVAs showed that most of the genetic variation in the samples was explained by host species rather than by sampling location. Nevertheless, the levels of HAD measured across specific pairs of host species were not correlated in the two focal galler groups. Hence, our results support the hypothesis of HAD as a central force in herbivore speciation, but also indicate that evolutionary trajectories are only weakly repeatable even in temporally overlapping radiations of related insect taxa.  相似文献   

10.
The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse.  相似文献   

11.
Macrobrachium olfersii is an amphidromous freshwater prawn, widespread along the eastern coasts of the Americas. This species shows great morphological modifications during ontogenesis, and several studies have verified the existence of a wide intraspecific variation. Because of this condition, the species is often misidentified, and several synonyms have been documented. To elucidate these aspects, individuals of M. olfersii from different populations along its range of distribution were investigated. The taxonomic limit was established, and the degree of genetic variability of this species was described. We extracted DNA from 53 specimens of M. olfersii, M. americanum, M. digueti and M. faustinum, which resulted in 84 new sequences (22 of 16S mtDNA, 45 of Cythocrome Oxidase I (COI) mtDNA, and 17 of Histone (H3) nDNA). Sequences of three genes (single and concatenated) from these species were used in the Maximum Likelihood and Bayesian Inference phylogenetic analyses and COI sequences from M. olfersii were used in population analysis. The genetic variation was evaluated through the alignment of 554 bp from the 16S, 638 bp from the COI, and 338 bp from the H3. The rates of genetic divergence among populations were lower at the intraspecific level. This was confirmed by the haplotype net, which showed a continuous gene flow among populations. Although a wide distribution and high morphological intraspecific variation often suggest the existence of more than one species, genetic similarity of Caribbean and Brazilian populations of M. olfersii supported them as a single species.  相似文献   

12.
This study used molecular data (mitochondrial 16s and COI) for the first time to explore evolutionary relationships among species of the pinnotherid crab genus Austinixa. Low levels of phylogenetic signal were detected for COI. High levels of phylogenetic signal were detected for 16s, indicating it is a more useful marker for inferring species level phylogenies in Austinixa. Phylogeographic patterns among species of Austinixa are consistent with allopatric speciation due to numerous climatic and oceanographic fluctuations during the last 5-6 my. In addition, all but two species have been derived since the closure of the Isthmus of Panama, a pattern consistent with hypotheses that the marine biota of the Caribbean and southeastern North America underwent a pulse of biotic turnover within the last 2-3 my. Austinixa aidae and Austinixa hardyi had identical 16s sequences, and differed by only 2 bp in COI, raising questions about the validity of A. hardyi as a distinct species.  相似文献   

13.
A combination of polymerase-chain-reaction amplification and automated DNA sequencing was used to survey variation in a species complex of pest insects, the spruce budworms (Choristoneura fumiferana species group), and an outgroup species, C. rosaceana. We sequenced an mtDNA region of 1,573 bp that extends from the middle of cytochrome oxidase subunit I (COI) through tRNA leucine (UUR) to the end of cytochrome oxidase subunit II. In addition, we examined levels of intraspecific variation within a 470-bp region of the COI gene. Choristoneura fumiferana clearly represented the oldest lineage within its species group, with 2.7%-2.9% sequence divergence from the other species. In contrast, the four remaining species (C. pinus, C. biennis, C. occidentalis, and C. orae) had closely related or identical mtDNA, with < 1% divergence among most of their haplotypes. Despite its older lineage and widespread geographic distribution, C. fumiferana showed significantly lower intraspecific genetic diversity than did C. occidentalis. Choristoneura orae shared haplotypes with C. occidentalis and C. biennis, and species-level separation of these three species was not supported. Two divergent, uncommon haplotypes were also found in C. occidentalis and C. biennis. The divergent haplotype in C. biennis had an unusually high number of inferred amino acid replacements, suggesting selective differences between mitochondrial DNA haplotypes. Transition:transversion ratios in Choristoneura paralleled those found in Drosophila; transition:transversion ratios were highest in closely related sequences but decreased with increasing sequence divergence. Nucleotide composition showed an A+T bias that was near the high end of the range known for insects. This work illustrates the potential utility of direct DNA sequencing in assessing population structures, species limits, and phylogenetic relationships among organisms that have not previously been subjected to DNA analysis.   相似文献   

14.
The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was <0.5%, with most species exhibiting no variation in any of the three gene regions. Interspecific divergence was also low: 18.5% of congeneric morphospecies shared identical COI barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy.  相似文献   

15.
The genus Encarsia F?rster includes parasitoid species that are effective natural enemies of whitefly and armoured scale insect agricultural pests. Within this genus, several species groups have been recognized on the basis of morphological similarity, although their monophyly appears uncertain. It is often difficult to separate morphologically similar species, and there is evidence that some species could in fact be complexes of cryptic species. Their correct identification is fundamental for biological control purposes. Recently, due to unreliability of morphological characters, molecular techniques have been investigated to identify markers that differentiate closely related species. In this study, DNA variation in an approximately 900 bp segment of the mitochondrial cytochrome oxidase subunit I (COI) gene was examined by both sequencing and PCR-RFLP. Two pairs of species that are difficult to distinguish morphologically were analysed: Encarsia formosa Gahan and Encarsialuteola Howard, belonging to the luteola group, and two populations of Encarsiasophia (Girault & Dodd) from Pakistan and Spain, belonging to the strenua group, recently characterized as cryptic species. High sequence divergence and species-specific restriction patterns clearly differentiate both species pairs. Parsimony analysis of the nucleotide sequences was also performed, including Encarsiahispida De Santis (luteola group) and Encarsia protransvena Viggiani (strenua group). Two monophyletic clades supporting the two groups of species considered were resolved. The results of this study support the use of the COI gene as a useful marker in separating species of Encarsia, for which morphological differences are subtle. Moreover, the COI gene appears potentially useful for understanding phylogenetic relationships in this genus.  相似文献   

16.
Partial cytochrome b DNA sequences for 62 Triatoma infestans were analyzed to determine the degree of genetic variation present in populations of this insect in the northwest region of Chuquisaca, Bolivia. A total of seven haplotypes were detected in the localities sampled. The phylogenetic relationship and population genetic structure of the haplotypes found in this region, indicate that there is greater variation in this relatively small region of Bolivia than what has been previously reported by studies using the same gene fragment, for more distant geographic areas of this country. In addition, a comparison of rural and peri-urban localities, indicate that there is no difference in the genetic variation of T. infestans between these two environments.  相似文献   

17.
Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.  相似文献   

18.
An increasing number of complete sequences of mitochondrial (mt) genomes provides the opportunity to optimise the choice of molecular markers for phylogenetic and ecological studies. This is particularly the case where mt genomes from closely related taxa have been sequenced; e.g., within Schistosoma. These blood flukes include species that are the causative agents of schistosomiasis, where there has been a need to optimise markers for species and strain recognition. For many phylogenetic and population genetic studies, the choice of nucleotide sequences depends primarily on suitable PCR primers. Complete mt genomes allow individual gene or other mt markers to be assessed relative to one another for potential information content, prior to broad-scale sampling. We assess the phylogenetic utility of individual genes and identify regions that contain the greatest interspecific variation for molecular ecological and diagnostic markers. We show that variable characters are not randomly distributed along the genome and there is a positive correlation between polymorphism and divergence. The mt genomes of African and Asian schistosomes were compared with the available intraspecific dataset of Schistosoma mansoni through sliding window analyses, in order to assess whether the observed polymorphism was at a level predicted from interspecific comparisons. We found a positive correlation except for the two genes (cox1 and nad1) adjoining the putative control region in S. mansoni. The genes nad1, nad4, nad5, cox1 and cox3 resolved phylogenies that were consistent with a benchmark phylogeny and in general, longer genes performed better in phylogenetic reconstruction. Considering the information content of entire mt genome sequences, partial cox1 would not be the ideal marker for either species identification (barcoding) or population studies with Schistosoma species. Instead, we suggest the use of cox3 and nad5 for both phylogenetic and population studies. Five primer pairs designed against Schistosoma mekongi and Schistosoma malayensis were tested successfully against Schistosoma japonicum. In combination, these fragments encompass 20-27% of the variation amongst the genomes (average total length approximately 14,000bp), thus providing an efficient means of encapsulating the greatest amount of variation within the shortest sequence. Comparative mitogenomics provides the basis of a rational approach to molecular marker selection and optimisation.  相似文献   

19.
克氏原螯虾(Procambarus clarkii)是广泛分布于我国淡水水域的外来入侵物种,对其种群遗传结构的研究有助于了解种群扩散过程。本文测定了淮河流域自然水体中9个地理种群共151个野生克氏原螯虾线粒体COⅠ序列,获得624 bp的有效基因片段,共定义了25个单倍型。AMOVA分析结果表明,淮河流域的克氏原螯虾种群内的变异占主导地位,单倍型多样性和核苷酸多样性均为中等水平,各地理种群间平均遗传差异较小(Fst=0.078),遗传差异不显著。系统发生树并没有按地理位置形成对应族群,表明克氏原螯虾各地理种群间存在明显的基因流,各地理种群间没有形成明显的种群遗传分化。  相似文献   

20.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号