首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of changes in secretory concentrations of K+, Na+ and HCO3 on transmucosal potential difference (PD) and resistance in Cl-free (SO42−) solutions were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments, histamine was not present in the nutrient solution and cimetidine was primarily used to obtain acid inhibition. Increase of K+ from 4 to 80 mM, decrease of Na+ from 156 to 15.6 mM and decrease of HCO3 from 25 to 5 mM gave, 10 min after the change, in the secreting fundus Δ PD values of 39.7, −11.9 and 3.2 mV, respectively. In the resting fundus, 1.5 to 2 h after the addition of cimetidine, the same changes in secretory ion concentration gave Δ PD values of 12.2, −5.6 and 1.5 mV, respectively. Replacement of cimetidine with SCN and without histamine yielded a Δ PD somewhat lower than that in cimetidine, namely 9 mV for a K+ change from 4 to 80 mM. Subsequent addition of histamine with SCN present gave a Δ PD of about 21 mV. The change in PD was attributed to histamine increasing the secretory membrane area, leading to an increase in K+ conductance. Another possibility is that histamine increases the K+ conductance per se.  相似文献   

2.
The effect of changing [K+], [Na+] and [Cl?] in nutrient solution was studied in bullfrog antrum with and without HCO3? in nutrient. In 25 mM HCO3? (95% O2/5% CO2) and in zero HCO3? (100% O2), nutrient pH was maintained at 7.3. Changing from 4 to 40 mM K+ or from 81 to 8.1 mM Cl? gave a decrease 10 min later in transmucosal PD (nutrient became more negative) — a normal response. These responses were less in zero than in 25 mM HCO3?. A decrease from 102 to 8 mM Na+ decreased PD (anomalous response of electrogenic NaCl symport). This effect was attenuated or eliminated in zero HCO3?. In contrast, change from 4 to 40 mM K+ gave initial anomalous PD response and change from 102 to 8 mM Na+, initial normal PD response with either zero or 25 mM HCO3?. Both responses were associated with (Na+ + K+)-ATPase pump and were greater in zero than in 25 mM HCO3?. Initial PD increases in zero HCO3? are explained as due to increase in the resistance of passive conductance and/or NaCl symport pathways. Thus, removal of HCO3? modifies conductance pathways of nutrient membrane.  相似文献   

3.
Pathways for HCO3 transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl---HCO3 exchange was assessed directly by 36Cl tracer flux measurements and indirectly by determinants of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3 concentration gradient (pHo 6/pHi 7.5) stimulated Cl uptake compared to Cl uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl for HCO3 was suggested by the HCO3 gradient-induced concentrative accumulation of intravesicular Cl. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3 gradient-driven Cl uptake further suggesting chemical as opposed to electrical Cl−HCO3 exchange coupling. Although basolateral membrane vesicle Cl uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl conductive pathway served to distinguish this mode of Cl translocation from HCO3 gradient-driven Cl uptake. No evidence for cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3 dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl concentration gradient. The basolateral membrane vesicle origin of the observed Cl−HCO3 exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl on HCO3 gradient-driven Na+ uptake suggesting a basolateral membrane Na+−HCO3 for Cl exchange mechanism, no effect of Na+ on Cl−HCO3 exchange was observed in the present study.  相似文献   

4.
In a previous study performed on zona fasciculata (ZF) cells isolated from calf adrenal glands, we identified an ACTH-induced Cl current involved in cell membrane depolarization. In the present work, we describe a volume-sensitive Cl current and compare it with the ACTH-activated Cl current. Experiments were performed using the whole-cell patch-clamp recording method, video microscopy and cortisol-secretion measurements. In current-clamp experiments, hypotonic solutions induced a membrane depolarization to −22 mV. This depolarization, correlated with an increase in the membrane conductance, was sensitive to different Cl channel inhibitors. In voltage-clamp experiments, hypotonic solution induced a membrane current that slowly decayed and reversed at −21 mV. This ionic current displayed no time dependence and showed a slight outward rectification. It was blocked to variable extent by different conventional Cl-channel inhibitors. Under hypotonic conditions, membrane depolarizations were preceded by an increase in cell volume that was not detected under ACTH stimulation. It was concluded that hypotonic solution induced cell swelling, which activated a Cl current involved in membrane depolarization. Although cell volume change was not observed in the presence of ACTH, biophysical properties and pharmacological profile of the volume-sensitive Cl current present obvious similarities with the ACTH-activated Cl current. As compared to ACTH, hypotonic solutions failed to trigger cortisol production that was weakly stimulated in the presence of high-K+ solution. This shows that in ZF cells, membrane depolarization is not a sufficient condition to fully activate secretory activities.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

5.
Effect of changing [K+], [Na+] and [Cl?] in nutrient solution on potential difference (PD) and resistance was studied in bullfrog antrum with and without nutrient HCO3? but with 95% O2/5% CO2 in both cases. In both cases, changing from 4 to 40 mM K+ gave about the same initial PD maximum (anomalous response) which was followed by a decrease below control level. Latter effect was much less with zero than with 25 mM HCO3?. Changing from 102 to 8 mM Na+ gave initial normal PD response about the same in both cases. However, 10 min later the change in PD with zero HCO3? was insignificant but with 25 mM HCO3? the PD decreased (anomalous response of electrogenic NaCl symport). PD maxima due to K+ and Na+ were largely related to (Na+ + K+)-ATPase pump. Changes in nutrient Cl? from 81 to 8.1 mM gave only a decrease in PD (normal response). Initial PD increases are explained by relative increases in resistance of simple conductance pathways and of parallel pathways of (Na+ + K+)-ATPase pump and Na+/Cl? symport. Removal of HCO3? and concurrent reduction of pH modify resistance of these pathways.  相似文献   

6.
A mathematical model of the HCO 3-secreting pancreatic ductal epithelium was developed using network thermodynamics. With a minimal set of assumptions, the model accurately reproduced the experimentally measured membrane potentials, voltage divider ratio, transepithelial resistance and short-circuit current of nonstimulated ducts that were microperfused and bathed with a CO2/HCO 3-free, HEPES-buffered solution, and also the intracellular pH of duct cells bathed in a CO2/HCO 3-buffered solution. The model also accurately simulated: (i) the effect of step changes in basolateral K+ concentration, and the effect of K+ channel blockers on basolateral membrane potential; (ii) the intracellular acidification caused by a Na+-free extracellular solution and the effect of amiloride on this acidification; and (iii) the intracellular alkalinization caused by a Cl-free extracellular solution and the effect of DIDS on this alkalinization. In addition, the model predicted that the luminal Cl conductance plays a key role in controlling both the HCO 3 secretory rate and intracellular pH during HCO 3 secretion. We believe that the model will be helpful in the analysis of experimental data and improve our understanding of HCO 3-transporting mechanisms in pancreatic duct cells. Received: 18 October 1995/Revised: 5 July 1996  相似文献   

7.
Summary The chloride conductance of the basolateral cell membrane of theNecturus proximal tubule was studied using conventional and chloride-sensitive liquid ion exchange microelectrodes. Individual apical and basolateral cell membrane and shunt resistances, transepithelial and basolateral, cell membrane potential differences, and electromotive forces were determined in control and after reductions in extracellular Cl. When extracellular Cl activity is reduced in both apical and basolateral solutions the resistance of the shunt increases about 2.8 times over control without any significant change in cell membrane resistances. This suggests a high Cl conductance of the paracellular shunt but a low Cl conductance of the cell membranes. Reduction of Cl in both bathing solutions or only on the basolateral side hyperpolarizes both the basolateral cell membrane potential difference and electromotive force. Hyperpolarization of the basolateral cell membrane potential difference after low Cl perfusion was abolished by exposure to HCO 3 -free solutions and SITS treatment. In control conditions, intracellular Cl activity was significantly higher than predicted from the equilibrium distribution across both the apical and basolateral cell membranes. Reducing Cl in only the basolateral solution caused a decrease in intracellular Cl. From an estimate of the net Cl flux across the basolateral cell membrane and the electrochemical driving force, a Cl conductance of the basolateral cell membrane was predicted and compared to measured values. It was concluded that the Cl conductance of the basolateral cell membrane was not large enough to account for the measured flux of Cl by electrodiffusion alone. Therefore these results suggest the presence of an electroneutral mechanism for Cl transport across the basolateral cell membrane of theNecturus proximal tubule cell.  相似文献   

8.
1. 1. The present experiments measure net fluxes of fluid, Cl and HCO3 across de-epithelialised rabbit corneas clamped between half chambers and bathed in Ringer solutions.
2. 2. Net fluxes of HCO3 and fluid occurred together across the cornea from stroma to aqueous when HCO3 and CO2 were present in the bathing solution.
3. 3. No net trans-corneal Cl flux was found
4. 4. The initiation of fluid flow in the presence of HCO3 and CO2 cannot be accounted for by bulk-phase osmotic flow across the cornea.
Keywords: Osmotic coupling; Bicarbonate flux; Fluid flux; Cl flux; (Cornea)  相似文献   

9.
The Cl conductance in isolated skin of frogs (Rana catesbeiana) acclimated to 30 mM solutions of NaCl, Na2SO4, MgCl2 and distilled water (DW) was studied. Transepithelial potential difference (PDtrans), short-circuit current (ISC) and total conductance (Gt) were measured under conditions such that there was Cl flux in the presence and absence of Na+ transport. The Cl content of the mucosal solution was acutely replaced with SO42− or gluconate to evaluate the effect of removal of Cl conductance on electrophysiological parameters. Mitochondria-rich cell density (DMRC) was also measured. Skins from frogs acclimated to NaCl and Na2SO4 showed the lowest and the highest DMRC, respectively, but no difference could be found between the skins from frogs acclimated to DW and MgCl2 indicating that DMRC is not unconditionally dependent on environmental Cl in this species. Frogs acclimated to NaCl showed marked differences when compared to the other groups: the highest Gt, probably represented by a higher paracellular conductance; the lowest transepithelial electrical potential difference which remained invariant after replacement of mucosal Cl with SO42− or replacement of mucosal Cl with gluconate and an inwardly oriented positive current in the absence of bilateral Na+.  相似文献   

10.
Summary The modulation of ion transport pathways in filtergrown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT-29 by muscarinic stimulation was studied by combined Ussing chamber and microimpalement experiments.Basolateral addition of 10–4 m carbachol induced a complex poly-phasic change of the cell potential consisting of (i) a fast and short (30-sec) depolarization of 15±1 mV from a resting value of –52±1 mV and an increase of the fractional resistance of the apical membrane (first phase), (ii) a repolarization of 22±1 mV leading to a hyperpolarization of the cell (second phase), (iii) a depolarization of 11±1 mV and a decrease of the fractional resistance of the apical membrane (the third phase), (iv) and sometimes, a hyperpolarization of 6±1 mV and an increase of the fractional resistance of the apical membrane (fourth phase). The transepithelial potential increased with a peak value of 2.4±0.3 mV (basolateral side positive). The transepithelial PD started to increase (serosa positive), coinciding with the start of the second phase of the intracellular potential change, and continued to increase during the third phase. Ion replacements and electrical circuit analyses indicate that the first phase is caused by increase of the Cl conductance in the apical and basolateral membrane, the second phase by increased K+ conductance of the basolateral membrane, and the third phase and the fourth phase by increase and decrease, respectively, of an apical Cl conductance. The first and second phase of the carbachol effect could be elicited also by ionomycin. They were strongly reduced by EGTA. Phorbol dibutyrate (PDB) induced a sustained depolarization of the cell and a decrease of the apical fractional resistance. The results suggest that two different types of Cl channels are involved in the carbachol response: one Ca2+ dependent and a second which may be PKC sensitive.In the presence of a supramaximal concentration of forskolin, carbachol evoked a further increase of the apical Cl conductance.It is concluded that the short-lasting carbachol/Ca2+-dependent Cl conductance is different from the forskolin-activated conductance. The increase of the Cl conductance in the presence of forskolin by carbachol may be due to activation of different Cl channels or to modulation of the PKA-activated Cl channels by activated PKC.The authors are grateful to Drs. Laboisse and Augeron for providing the cell clone, and we thank Prof. Dr. F.H. Lopes da Silva for his comments. This work was supported by a grant from the Dutch Organization for Scientific Research, NWO.  相似文献   

11.
Using fluorescent membrane markers, we have previously shown that extracellular ATP stimulates both exocytosis and membrane internalization in the Fisher rat thyroid cell line FRTL. In this study, we examine the actions of ATP using whole-cell recording conditions that favor stimulation of membrane internalization. ATP stimulation of the P2X7 receptor activated a reversible, Ca2+-permeable, cation conductance that slowly increased in size without changes in ion selectivity. ATP also induced a delayed irreversible decrease in cell capacitance (Cm) that was equivalent to an 8% decrease in membrane surface area. Addition of guanosine 5′-0-2-thiodiphosphate to the pipette solution inhibited the ATP-induced decrease in Cm without affecting channel activation. The effects of ATP on membrane conductance were mimicked by 2′,3′-O-(4-benzoylbenzoyl)-ATP, but not by UTP, adenosine, or 2-methylthio-ATP, and were inhibited by pyridoxal phosphate-6-azophenyl-2′4′-disulfonic acid, adenosine 5′-triphosphate-2′3′-dialdehyde, and Cu2+. The capacitance decrease persisted in Na+-, Ca2+- and Cl-free external saline or with Ca2+-free pipette solution. It is concluded that ATP activation of the inotropic P2X7 receptor stimulates membrane internalization by a mechanism that involves intracellular GTP, but does not require internal Ca2+ or influx of Na+ or Ca2+ through the receptor-gated channel.  相似文献   

12.
Occasional spontaneous “action potentiais” are found in mature hyphae of the fungus Neurospora crassa. They can arise either from low-level sinusoidal oscillations of the membrane potential or from a linear slow depolarization which accelerates into a rapid upstroke at a voltage 5–20 mV depolarized from the normal resting potential (near − 180 mV). The “action potentiais” are long-lasting, 1–2 min and at the peak reach a membrane potential near −40 mV. A 2− to 8−fold increase of membrane conductance accompanies the main depolarization, but a slight decrease of membrane conductance occurs during the slow depolarization. Two plausible mechanisms for the phenomenon are (a) periodic increases of membrane permeability to inorganic ions, particularly H+ or Cl- and (b) periodic decreases in activity of the major electrogenic pump (H+) of the Neurospora membrane, coupled with a nonlinear (inverse sigmoid) current-voltage relationship.Identification of action potential-like disturbances in fungi means that such behavior has now been found in all major biologic taxa which have been probed with suitable electrodes. As yet there is no obvious function for the events in fungi.  相似文献   

13.
Summary Electrophysiologic and tracer experiments have shown that Cl entersNecturus proximal tubule cells from the tubule lumen by a process coupled to the flow of Na+, and that Cl entry is electrically silent. The mechanism of Cl exit from the cell across the basolateral membrane has not been directly studied. To evaluate the importance of the movement of Cl ions across the basolateral membrane, the relative conductance of Cl to K+ was determined by a new method. Single-barrel ion-selective microelectrodes were used to measure intracellular Cl and K+ as a function of basolateral membrane PD as it varied normally from tubule to tubule. Basolateral membrane Cl conductance was about 10% of K+ conductance by this method. A second approach was to voltage clamp the basolateral PD to 20 mV above and below the spontaneous PD, while sensing intracellular Cl activity with the second barrel of a double-barrel microelectrode. An axial wire electrode in the tubule lumen was used to pass current across the tubular wall and thereby vary the basolateral membrane PD. Cell Cl activity was virtually unaffected by the PD changes. We conclude that Cl leavesNecturus proximal tubule cells by a neutral mechanism, possibly coupled to the efflux of Na+ or K+.  相似文献   

14.
The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3 symport or OH/HCO3 antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions.Key words: Chara, membrane conductance, pH banding, action potential, alkaline cell regions, heterogeneity  相似文献   

15.
The purpose of this study was to investigate the characteristics of carbonic anhydrase (CA) and the Cl/HCO3 exchanger (Band 3; AE1) in the erythrocytes of bowfin (Amia calva), a primitive air-breathing fish, in order to further understand the strategies of blood CO2 transport in lower vertebrates and gain insights into the evolution of the vertebrate erythrocyte proteins, CA and Band 3. A significant amount of CA activity was measured in the erythrocytes of bowfin (70 mmol CO2 min−1 ml−1), although it appeared to be lower than that in the erythrocytes of teleost fish. The turnover number (Kcat) of bowfin erythrocyte CA was intermediate between that of the slow type I CA isozyme in agnathans and elasmobranchs and the fast type II CA in the erythrocytes of the more recent teleost fishes, but the inhibition properties of bowfin erythrocyte CA were similar to the fast mammalian CA isozyme, CA II. In contrast to previous findings, a plasma CA inhibitor was found to be present in the blood of bowfin. Bowfin erythrocytes were also found to possess a high rate of Cl/HCO3 exchange (6 nmol HCO3 s−1 cm−2) that was sensitive to DIDS. Visualization of erythrocyte membrane proteins by SDS-PAGE revealed a major band in the 100 kDa range for the trout, which would be consistent with the anion exchanger. In contrast, the closest major band for the membranes of bowfin erythrocytes was around the 140 kDa range. Taken together, these results suggest that the strategy for blood CO2 transport in bowfin is probably similar to that in most other vertebrates despite several unique characteristics of erythrocyte CA and Band 3 in these primitive fish.  相似文献   

16.
In the preceding paper (Bevensee, M.O., R.A. Weed, and W.F. Boron. 1997. J. Gen. Physiol. 110: 453–465.), we showed that a Na+-driven influx of HCO3 causes the increase in intracellular pH (pHi) observed when astrocytes cultured from rat hippocampus are exposed to 5% CO2/17 mM HCO3 . In the present study, we used the pH-sensitive fluorescent indicator 2′,7′-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and the perforated patch-clamp technique to determine whether this transporter is a Na+-driven Cl-HCO3 exchanger, an electrogenic Na/HCO3 cotransporter, or an electroneutral Na/HCO3 cotransporter. To determine if the transporter is a Na+-driven Cl-HCO3 exchanger, we depleted the cells of intracellular Cl by incubating them in a Cl-free solution for an average of ∼11 min. We verified the depletion with the Cl-sensitive dye N-(6-methoxyquinolyl)acetoethyl ester (MQAE). In Cl-depleted cells, the pHi still increases after one or more exposures to CO2/HCO3 . Furthermore, the pHi decrease elicited by external Na+ removal does not require external Cl. Therefore, the transporter cannot be a Na+-driven Cl-HCO3 exchanger. To determine if the transporter is an electrogenic Na/ HCO3 cotransporter, we measured pHi and plasma membrane voltage (Vm) while removing external Na+, in the presence/absence of CO2/HCO3 and in the presence/absence of 400 μM 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS). The CO2/HCO3 solutions contained 20% CO2 and 68 mM HCO3 , pH 7.3, to maximize the HCO3 flux. In pHi experiments, removing external Na+ in the presence of CO2/HCO3 elicited an equivalent HCO3 efflux of 281 μM s−1. The HCO3 influx elicited by returning external Na+ was inhibited 63% by DIDS, so that the predicted DIDS-sensitive Vm change was 3.3 mV. Indeed, we found that removing external Na+ elicited a DIDS-sensitive depolarization that was 2.6 mV larger in the presence than in the absence of CO2/ HCO3 . Thus, the Na/HCO3 cotransporter is electrogenic. Because a cotransporter with a Na+:HCO3 stoichiometry of 1:3 or higher would predict a net HCO3 efflux, rather than the required influx, we conclude that rat hippocampal astrocytes have an electrogenic Na/HCO3 cotransporter with a stoichiometry of 1:2.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.  相似文献   

18.
The effects of changes in secretory concentrations of K+, Cl and Na+ on transmembrane potential difference (PD) and resistance were compared for secreting fundus and resting fundus of Rana pipiens. In the resting fundus experiments histamine was present, and SCN and omeprazole gave similar results. Increase of K+ from 4 to 80 mM, decrease of Cl from 160 to 16 mM and decrease of Na+ from 156 to 15.6 mM gave, respectively, 10 min after the change, in the secreting fundus ΔPD = 7.6, 10.0 and −2.2 mV and in the resting fundus ΔPD = 4.3, 14.4 and 0 mV. With cimetidine and no histamine, increase of K+ from 4 to 80 mM gave a ΔPD which decreased to near zero after exposure to cimetidine for at least 30 min. For the same K+ change, replacement of cimetidine with SCN or omeprazole and without histamine maintained ΔPD near zero and subsequent addition of histamine with inhibitor present gave a ΔPD of about 12 mV. The change in ΔPD was attributed to histamine increasing the secretory membrane area, which results in an increase in K+ conductance. Increase in ΔPD in the resting fundus compared to the secreting fundus for a decrease from 160 to 16 mM Cl may be due to relatively little Cl entering the lumina from cells in the resting fundus, which would result in a greater change of the ratio intracellular Cl/luminal Cl in the resting fundus than in the secreting fundus for the decrease in Cl studied.  相似文献   

19.
In the rabbit gallbladder epithelium, hydrochlorothiazide (HCTZ) was shown to inhibit the transepithelial NaCl transport and the apical Na+-Cl symport, to depolarize the apical membrane potential and to enhance the cell-to-lumen Cl backflux (radiochemically measured), this increase being SITS-sensitive. To better investigate the causes of the depolarization and the Cl backflux increase, cells were punctured with conventional microelectrodes on the luminal side (incubation in bicarbonate-free saline at 27°C) and the apical membrane potential (V m) was studied either with prolonged single impalements or with a set of short multiple impalements. The maximal depolarization was of 3–4 mV and was reached with 2.5 × 10–4 m HCTZ. It was significantly enhanced by reducing luminal Cl concentration to 30 mm; it was abolished by SCN, furosemide, SITS; it was insensitive to DPC. SITS converted the depolarization into a hyperpolarization of about 4 mV; this latter was apamin, nifedipine and verapamil sensitive. It was concluded that HCTZ concomitantly opens apical Cl and (probably) Ca2+ conductances and, indirectly, a Ca2+-sensitive, apamin inhibitable K+ conductance: since the intracellular Cl activity is maintained above the value predicted at the electrochemical equilibrium, the opening of the apical Cl conductance depolarizes V mand enhances Cl backflux. In the presence of apamin or verapamil, to avoid the hyperpolarizing effects due to HCTZ, the depolarization elicited by this drug was fully developed (7–10 mV) and proved to be Ca2+ insensitive. On this basis and measuring the transepithelial resistance and the apical/basolateral resistance ratio, the Cl conductance opened by HCTZ has been estimated and the Cl backflux increase calculated: it proved to be in the order of that observed radiochemically. The importance of this Cl leak to the lumen in the overall inhibition of the transepithelial NaCl transport by HCTZ has been evaluated.This research was supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica, Rome, Italy. We are very grateful to prof. G. Meyer and dr. G. Bottà for helpful discussion and criticism.  相似文献   

20.
The present experiments investigate HCO3, Cl and fluid fluxes across partially destromalised corneas. Although there is no net flux of Cl, there is a net flux of HCO3 across the endothelium from stromal side to aqueous side which is accompanied by a flux of water in the same direction. Bulk phase osmosis cannot account for the initiation of the flux of fluid. Local osmotic coupling between ions and water is postulated to occur in the preparation. The exudate is hypertonic to the bathing Ringer solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号