首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil solution chemistry was investigated at a forested watershed draining into Woods Lake. N.Y. as part of the Experimental Watershed Liming Study (EWLS). The objective of this study was to assess the response of soil water to watershed treatment of calcite (CaCO3). This material was applied in an effort to mitigate the effects of acidic atmospheric deposition. Soil solutions draining Oa and Bs horizons in reference subcatchments were characterized by low pH and acid neutralizing capacity (ANC) due to elevated concentrations of SO 4 2– , NO 3 and organic anions relative to the sum of base cation (CB Ca2+, Mg2+, Na+, K+) concentrations. Seasonal and spatial variation of pH andANC in soil solutions appeared to belargely controlled by variations in the concentrations of dissolved organic acids which, in turn, were regulated by reactions of Al with soil organic matter. Nitrate was positively correlated and SO2+ was negatively correlated with Ca2+ and Al concentrations in reference soil solutions, indicating that changes in NO 3 influences spatial and seasonal variations in Ca2+ and Al concentrations. On this basis, NO 3 appears to be important in soil acidification and the dynamics of drainage water acidity. Comparison of our results with historical data for the site showed declines in concentrations of SO 4 2– , which are consistent with decreases in emissions of SO4, in the eastern U.S. and atmospheric deposition of SO 4 2– , to the Adirondack region. Mineral soil solutions have shown large increases in concentrations of NO 3 . Declines in concentrations of CB and increases in concentrations of Al have occurred over the last ten years, suggesting depletion of soil pools of exchangeable basic cations and increased sensitivity to acidic deposition. Calcite (CaCO3) treatment of 6.89 Mg/ha resulted in a significant increase of Ca2+, ANC and pH in both Oa and Bs horizon soil solutions. Soil water response to CaCO3 addition was most evident during the first year after treatment, apparently due to macropore transport of particulate and dissolved CaCO3 However, increases in ANC and pH in the mineral soil waters were not sustained and appeared insufficient to result in substantial improvement in surface water quality over the 43 month study period.  相似文献   

2.
The Experimental Watershed Liming Study (EWLS) was initiated to evaluate the application of CaCO3 to a forested watershed in an effort to mitigate the acidification of surface water. The objective of the EWLS was to assess the response of the Woods Lake watershed to an experimental addition of CaCO3. During October 1989, 6.89 Mg CaCO3/ha was applied by helicopter to two subcatchments comprising about 50% (102.5 ha) of the watershed area. The EWLS involved individual investigations of the response of soil and soil water chemistry, forest and wetland vegetation, soil microbial processes, wetland, stream and lake chemistry, and phytoplankton and fish to the CaCO3 treatment. In addition, the Integrated Lake/Watershed Acidification (ILWAS) model was applied to the site to evaluate model performance and duration of the treatment. The results of these studies are detailed in this volume. The purposes of this introduction and synthesis paper are to: 1) present the overall design of the EWLS, 2) discuss the linkages between the individual studies that comprise the EWLS, and 3) summarize the response of the lakewater chemistry to watershed addition of CaCO3 and compare these results to previous studies of direct lake addition. An analysis of lake chemistry revealed the watershed treatment resulted in a gradual change in pH, acid neutralizing capacity (ANC) and Ca2+ in the water column. This pattern was in contrast to direct lake additions of CaCO3 which were characterized by abrupt changes following base addition and subsequent rapid reacidification. Over the three-year study period, the supply of ANC to drainage waters was largely derived from dissolution of CaCO3 in wetlands. Relatively little dissolution of CaCO3 occurred in freely draining upland soils. The watershed treatment had only minor effects on forest vegetation. The watershed treatment eliminated the episodic acidification of streamwater and the near-shore region of the lake during snowmelt, a phenomenon that occurred during direct lake treatments. Positive ANC water in the near-shore area may improve chemical conditions for fish reproduction, and allow for the development of a viable fish population. The watershed CaCO3 treatment also decreased the transport of Al from the watershed to the lake, and increased the concentrations of dissolved organic carbon (DOC) and dissolved silica (H4SiO4) in stream and lakewater. The watershed treatment appeared to enhance soil nitrification, increasing concentrations of NO3 in soilwater and surface waters. However, the acidity associated with this NO3 release was small compared to the increase in ANC due to CaCO3 addition and did not alter the acid-base status of Woods Lake. Acid neutralizing capacity (ANC) budgets for 12-month periods before and after the watershed treatment showed that the lake shifted from a large source of ANC to a minor source due to retention of SO4 2–, NO3 , Al and the elevated inputs of Ca2+ associated with the watershed CaCO3 application. In contrast to the direct lake treatments, Ca2+ inputs from the watershed application were largely transported from the lake.  相似文献   

3.
Surface water acidification is potentially a problem in regions with low ionic strength drainage waters. Atmospheric deposition of sulfuric acid has generally been implicated as the causative agent of this problem, although other sources of acidity may contribute. The Adirondack region of New York State is an area with acid-sensitive surface waters and an abundance of acidic lakes. The intent of this study was to evaluate the processes regulating the acid/base chemistry of a series of lakes draining a large heterogeneous watershed in the Adirondack region of New York.The study site, the North Branch of the Moose River, is heterogeneous in its soil and geological characteristics. This variability was reflected through differences in water chemistry that occurred within the basin. The northern headwaters generally drain subcatchments with shallow, acidic soils. The resulting water chemistry was acidic (equivalence of acidic anions exceeded equivalence of basic cations) with high concentrations of Al and dissolved organic carbon (DOC). As this water migrated through a large lake (Big Moose Lake) with a moderate hydrologic retention time (0.5 yr), considerable loss of DOC was evident.As acidic water was transported through the drainage area, it mixed with waters that were enriched in concentrations of basic cations from the eastern subbasins. As a result, there was a successive increase in the acid neutralizing capacity (ANC) and a decrease in Al concentrations as water migrated from the northern reaches to the outlet of the watershed.In addition to these general trends, short-term changes in water chemistry were evident. During low flow summer periods concentrations of basic cations were elevated, while concentrations of SO 4 2– and NO 3 were relatively low. These conditions resulted in less acidic waters (higher ANC) with relatively low concentrations of Al. During high flow winter/spring conditions, elevated concentrations of SO 4 2– and NO 3 were evident, while concentrations of basic cations were reduced resulting in low pH (low ANC) waters with high concentrations of Al.Variability in the processes regulating the pH buffering of waters was apparent through these short-term changes in water chemistry. In the northern subbasin short-term fluctuations in ANC were minimal because of the buffering of Al under low pH conditions. Seasonal changes in the ANC were more pronounced in the eastern subbasin because of the predominance of inorganic carbon buffering in the circumneutral pH waters.Lakes in the west-central Adirondacks have characteristically short hydraulic residence times and elevated nitric acid inputs. As a result these waters may be more susceptible to surface water acidification than other acid-sensitive lake districts in eastern North America. Given the apparent interregional differences, extrapolation of chemical trends in the Adirondacks to other areas may be tenuous.  相似文献   

4.
Hadas  Ora  Pinkas  Riki 《Hydrobiologia》1992,235(1):295-301
Monomictic Lake Kinneret is stratified during summer and autumn, resulting in a hypolimnion rich in H2S (3–7 mg 1–1). In winter and spring every year a bloom of dinoflagallate Peridinium gatunense produces an average biomass of 150000 ton wet weight. Part of this biomass sinks to the hypolimnion and sediments where it is decomposed and mineralized, with some of the mineralization due to the activity of sulfate-reducing bacteria (SRB). The sulfate-reduction potential of the upper sediment layer at the deepest part of the lake (42 m) was measured. The activity of the enzyme arylsulfatase was also monitored. Rates of sulfate-reduction ranged from a minimum of 12 nmoles SOf4 p2–-reduced cm–3 day–1 in December before lake overturn to a maximum of 1673 nmoles SOf4 p2– reduced cm–3 day–1 in July during stratification. These rates are considerably higher than those recorded from other freshwater lakes in the world and are probably limited more by the availability of organic matter than by sulfate concentrations.  相似文献   

5.
Temporal and longitudinal variations in the chemistry of two tributary streams of Woods Lake in the Adirondack Mountains of New York were monitored before and after a watershed CaCO3 application. One subcatchment of the lake had a large beaver pond and wetland at its headwaters, while the second was free-flowing. Treatment of both subcatchments with CaCO3 resulted in an immediate increase in acid neutralizing capacity (ANC) associated with Ca2+ release. The extent and duration of the response to the treatment were greater in the wetland-impacted stream. Aluminum was retained and complexed with organic solutes generated within the beaver-pond. In the free-flowing stream, NO 3 concentration increased significantly after the manipulation; this pattern was not evident in the wetland-impacted stream. Net retention of SOkinf4/sup2– was evident in the beaver pond prior to and following treatment, and this response was enhanced after the watershed liming. Comparisons of beaver pond inlet/outlet concentrations, mass balance calculations, and in-pond profiles of chemical parameters revealed patterns of retention of SO 4 2– , NO 3 and Al, and release of Fe2+, dissolved organic carbon (DOC) and NH 4 + in the wetland during the summer before CaCO3 treatment. Post-treatment releases of Ca2+ from the near-sediment zone in the beaver pond corresponded to anoxic periods in mid- to late-summer and under ice in winter. These findings demonstrate the importance of increased microbial processing of organic matter, along with high partial pressure Of CO2 (Pco2) in facilitating the dissolution of the applied CaCO3. Dissolved silica (H4SiO4) was retained in the wetland during the summer prior to treatment but was released after the manipulation. This phenomenon may reflect the dissolution of diatom frustules or silicate minerals in the wetland at higher pH and DOC concentrations. Within two years of the CaCO3 treatment 60% of the CaCO3 applied to the beaver pond and surrounding wetland was dissolved and transported from the pond, in contrast to only 2.2% of the CaCO3 applied to the upland subcatchment draining into the wetland. These results, coupled with high quantities of exchangeable Ca2+ found in sediments and onSphagnums mosses in the pond, demonstrate the importance of hydrologic source areas and wetlands in facilitating the dissolution of added CaCO3 and in regulating the production of chemical species important in ANC generation.  相似文献   

6.
Lake Kinneret, Israel, is a warm (13–30°C) monomictic lake that stratifies in April and turns over in December. Between January and June each year, a heavy bloom (up to 250 g wet weight n–2 2) of the dinoflagellate Peridinium gatunense dominates the phytoplankton biomass. In early summer, the bloom collapses, and the sinking Peridinium biomass serves as a trigger for intense sulfate-reduction activity throughout the hypolimnion and within the sediments. The availability of organic matter and sulfate was high shortly after the bloom crash and the beginning of stratification and was lowest in December before overturn. Sulfate-reduction rates at three different sites in the lake were studied. In the sediments, the rates varied seasonally and among stations from 5 to 1600 nmol SO4 –2 reduced cm–3 day–1, with respect to the distance from the Jordan River, depth, organic content, and stratification period. During years of low lake water levels, intense sulfate reduction occurred in the hypolimnion, resulting in anoxia and high concentrations of H2S (>400 m). In years with high water levels, early bloom, and delayed stratification, higher rates of sulfate reduction were recorded in the sediments, probably as a result of a greater fraction of the primary production (organic matter) reaching the bottom. Correspondence to: O. Hadas.  相似文献   

7.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   

8.
Watershed processes influence the acid neutralizing capacity of surface waters by mediating changes in concentration of ionic solutes. Acidification of surface waters by atmospheric deposition of mineral acids and the extent to which ecosystem transformations neutralize this acidity are of particular concern. Seasonal variations in flow paths of water through soil and biological processes result in short-term changes in chemistry that may be critical to surface water ecology. In this study, we assessed longitudinal and temporal variations in the chemistry of a low-order stream, Pancake-Hall Creek, located in the west-central Adirondack region of New York. By quantifying changes in ionic solute concentration (e.g. Ca2+, Ala+, SO 4 2– , NO 3 ) we were able to evaluate processes responsible for short-term fluctuations in acid/base chemistry.In the headwater sites, stream water was acidic; changes in pH, acid neutralizing capacity (ANC) and Al were primarily due to seasonal variations in basic cation and NO 3 concentrations. At the downstream sites, water migrated through a large beaver impoundment and thick till resulting in higher pH, acid neutralizing capacity and basic cation concentrations, and lower concentrations of Al. Neutralization of acidity was particularly evident during the low flow summer period and coincided with retention of SO 4 2– in the beaver impoundment. During the high flow non-summer (October to June) period, depressed pH and ANC, and elevated Al concentrations were observed in the downstream sites. Acidic conditions during the non-summer period were not due to the oxidation of reduced sulfur deposits (e.g. SO 4 2– events) but rather the resumption of conservative SO 4 2– transport through the beaver impoundment (e.g. minimal SO 4 2– retention) coupled with increases in NO 3 .  相似文献   

9.
The biogeochemical input-output fluxes of two forested catchments with contrasting levels of atmospheric deposition were investigated in Germany. This paper focuses on the effects of recent changes in atmospheric inputs on the chemical composition in the soil solution and stream. The catchment 'Schluchsee' (Black Forest; SW Germany) is characterized by relatively low atmospheric inputs whereas 'Rotherdbach' (Ore Mountains; E Germany) received significant amounts of acid deposition (mainly originating from SO2 emissions) until recent years. Both sites reveal decreases in H+ and S deposition during the 1990s. This pattern is typical when compared to trends in Europe. In response to the reduced S deposition, soil solution and streamwater SO4 2– concentrations decreased significantly. A net release of SO4 2– (output > input) was observed at both sites due to the release of S previously stored in the soil. The level of N deposition was more or less constant at both sites. At Schluchsee, NO3 concentration in streamwater remained more or less unchanged, whereas a decrease at Rotherdbach was observed. A recovery from acidification was found in seepage water as indicated by increasing acid neutralizing capacity (ANC). Streamwater ANC increased only in the permanently acidified Rotherdbach. No change of ANC was observed in the Schluchsee stream, which was characterized by episodic acidification during high-flow conditions. Nevertheless, the key factor controlling the recovery from surface water acidification was the type, amount and distribution of stored S pools in the ecosystem. Thus, time series analysis of long-term data of input-output chemistry can be a valuable instrument in order to improve the understanding of linked terrestrial-aquatic systems and give useful clues for modeling efforts.  相似文献   

10.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   

11.
In acid-sensitive watersheds of the northeastern US, decreases in SO2 emissions and atmospheric deposition of sulfur have not been accompanied by marked changes in pH and acid neutralizing capacity (ANC). To better understand this phenomenon, we investigated the long-term trends in soil solution (1984–1998) and stream water (1982–2000) chemistry along a natural soil catena at the Hubbard Brook Experimental Forest, New Hampshire, USA. Significant declines in strong acid anion concentrations were accompanied by declines in base cation concentrations in soil solutions draining the Oa and Bs soil horizons at all elevations. The magnitude of change varied with position in the landscape. Recovery, as indicated by increasing ANC (mean 2.38µEqL–1year–1) and decreasing concentrations of inorganic monomeric Al (mean 1.03µmolL–1year–1), was confined to solutions draining the Bs horizon at mid-to-higher elevations. However, persistently low Ca2+/Ali ratios (<1) in Bs soil solutions at these sites may be evidence of continuing Al stress to trees. In Bs soil solution at a lower elevation site and in Oa soil solutions at all sites, declines in base cations (mean 3.71µEqL–1year–1) were either similar to or exceeded declines in strong acid anions (mean 3.25µEqL–1year–1) resulting in no change in ANC. Changes in the chemistry of stream water reflected changes in soil solutions, with the greatest improvement in ANC occurring at high elevation and the rate of increase decreasing with decreases in elevation. The pH of soil solutions and stream waters either declined or did not change significantly. Therefore pH-buffering processes, including hydrolysis of Al and possibly the deprotonation of organic acids, have prevented increases in drainage water pH despite considerable reductions in inputs of strong acids.  相似文献   

12.
Aluminum geochemistry in peatland waters   总被引:4,自引:4,他引:0  
The chemical speciation of aluminum was examined in surface water samples from Sphagnum peatlands in north-central Minnesota, from peatlands along the Canadian east coast, and from bogs in the Pennine Mountain area of England. In highly organic ([DOC] 50 mg L–1 ), low pH waters, 80–90% of total dissolved Al was complexed with organic matter (OM), while in waters with low DOC ([DOC] 5 mg L–1) 54–86% of total dissolved Al existed as Al+3 or other inorganic Al species. Batch titrations of OM with Al revealed a high Al binding capacity, 1.4–2.8 mol (mg DOC)–1, that generally was unsaturated with Al. Titrations of OM with Al in conjunction with a continuous distribution model were used to determine Al-OM conditional stability constants. Binding capacity (mol Al (mg DOC)–1) and strength (formation constant) increased from pH 3 to 5 but decreased above pH 5 due to formation of AI-hydroxy species including A1(OH)3 (s). The high binding capacity of OM in bog waters facilitates metal mobility, especially in low pH (< 5) wetlands where metal solubility is high and OM concentrations are highest. Results showed that the relative degree of organic matter saturation with metal ions was important in modeling AI speciation in bog waters.  相似文献   

13.
The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53–70 mmol m–2 yr–1), deposition of sulfur to sediments in settling seston (53 mmol m–2 yr–1), and sulfate diffusion (0–39 mmol m–2 yr–1) into sediments were examined. Measurements of inputs (12–108 mmol m–2 yr–1) and outputs (5.5–25 mmol m–2 yr–1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10–28 mmol m–2 yr–1) and measured fluxes of S into the sediments. Because of the low SO4 2– concentrations (µmole L–1) in the lake, annual uptake by plankton (53–70 mmol m–2 yr–1) represented a large fraction (>50%) of the SO4 2– inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO4 2– concentrations (µmole L–1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0–160 µmole m–2 d–1) caused SO4 2– depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO4 2– concentrations indicated that only 30–50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.  相似文献   

14.
Porewater acid/base chemistry in near-shore regions of an acidic lake   总被引:1,自引:0,他引:1  
Sediment porewaters in the near-shore region (within 1 m of the shoreline) of an acidic lake (Dart's Lake) were monitored during the summer of 1983 to investigate whether spatial variations in porewater acid/base chemistry were significant in this region of the lake. Previous investigations of Dart's Lake porewaters have indicated that within deeper waters (>2m depth), sediment porewaters are elevated in alkalinity relative to overlying lake water. Within the near-shore region, porewaters both considerably more and less acidic than the lake water were observed. Both reduction of strong acid anions (SO4 2–, NO3 ) and the mobilization of base cations were significant mechanisms of alkalinity production in porewaters exhibiting reducing conditions. In sediments reflecting oxic conditions, porewaters were generally more acidic than the lakewater. Measurement of groundwater seepage into the lake at the near-shore sites indicated that oxic sites exhibited elevated inputs of groundwater when compared to sites where reducing conditions existed. The acidic porewaters associated with high groundwater flows suggests that groundwater inputs to the lake may be a source of acidity (not alkalinity) on a whole-lake basis.  相似文献   

15.
Larval abundance of Chironomus circumdatus in sewage canal and pond systems was studied during 1988–1990. Monthly changes in the morphometric features of the pond revealed that both total and littoral areas progressively decreased from 1063 and 107 m2 in December 1988 to 151 and 43 m2 in May '89; the decrease during the year 1989–1990 was from 1116 and 92 m2 in October to 109 and 31 m2 in May. A significant negative correlation (r= – 0.52) was obtained for the relation between littoral area and larval density in the pond. Larval density and biomass depended generally on the nature of the substrate and quantity of organic matter. Larval density of Ch. circumdatus was positively correlated with O2, bacterial count and organic matter content, but negatively correlated with CO2 level. Daily removal of organic matter by the larvae ranged from 20 to 31 % of the available organic matter in the sewage canal and from 3 to 11 % in the pond.  相似文献   

16.
Chemical limnology of soft water lakes in the Upper Midwest   总被引:2,自引:0,他引:2  
Water samples from 36 lakes in northern Minnesota, Wisconsin, and Michigan were collected and analyzed during 1983–1984. All study lakes were dilute and had total alkalinities of less than 150 eq · L–1. Minnesota lakes have hydrologic inputs from the watershed and inputs of base cations derived from the watershed. Study lakes in Minnesota had higher total alkalinities, dissolved organic carbon, and noncarbonate alkalinity as a result of watershed inputs. Lakes in Michigan and Wisconsin were precipitation-dominated seepage lakes that have lower concentrations of base cations than lakes in Minnesota. All of the study lakes have lower sulfate concentrations than expected, based on atmospheric wet deposition and evapotranspiration.Pore water samples collected from one of the study lakes—Little Rock Lake—in Wisconsin were used to calculate diffusive fluxes between the sediment and water column. According to these calculations, the sediments were a source of total alkalinity and Ca2+ and a sink for SO4 2–. The sediment-water exchange of total alkalinity, Ca2+, and SO4 2– appears to be important in the whole-lake budgets of these ions for Little Rock Lake.  相似文献   

17.
Sulfur cycling in forests   总被引:6,自引:5,他引:1  
Sulfur is essential for the production of certain amino acids in plants. As amino acid sulfur is the major form of sulfur in trees, there is a strong relationship between organic S and organic N in tree tissue. Sulfur deficiencies occur in parts of southeastern Australia and northwestern North America, remote from pollutant inputs. Since bilogical S requirements of forests are modest (< 5 kg · ha–1 yr–1 for net vegetative increment), however, atmospheric S inputs in polluted regions (10–80 kg · ha–1 yr–1 ) often exceed not only the forest ecosystem S requirement but also its ability to biologically accumulate S. There is some increase in the SO2– 4–S content of forest vegetation in response to elevated atmospheric S inputs, but this capacity is apparently easily saturated. Soil SO2–2 4adsorption is often the dominant feature of S cycling in polluted ecosystems and often accounts for net ecosytem S accumulations.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

18.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

19.
The surface level of Lake Kinneret is regulated to remain between –209 m and –213 m msl. During the stratified period, soluble reactive phosphorus (SRP), ammonium (NH inf4 sup+ ) and dissolved sulphide (H2S) accumulate in the hypolimnion. The concentration of these solutes, which are direct and indirect products of the decomposition of organic matter, increase considerably in summers with lower lake levels. A numerical model describing depth-averaged hypolimnion and epilimnion current velocities for high and low lake levels was adapted for Lake Kinneret. Simulated hypolimnetic currents were shown to be stronger for low lake levels as a result of the fact that low lake levels are characterized by a thinner hypolimnion while the thickness of the epilimnion remains unchanged. We suggest that the stronger hypolimnetic currents have the following consequences: 1. turbulence is induced, 2. the enhanced turbulence results in higher resuspension, 3. because SO4= is available to bacteria on resuspended particles, mineralization rates are enhanced, and 4. focusing of fine sediments and associated organic matter to the pelagic zone is enhanced.  相似文献   

20.
1. Lake Kinneret is a warm (13–30°C) monomictic lake. Between January and June a heavy annual bloom of the dinoflagellate Peridinium gatunense dominates phytoplankton biomass (250 g m?2). At the beginning of the summer, degradation and decomposition of the Peridinium biomass occurs, serving as a trigger for intense sulphate reduction in the hypolimnion and sediments. 2. The rates of sulphate reduction in the sediments varied seasonally from 12 to 1700 nmol SO4.?2 reduced cm?3 day?1 in December and July, respectively. The availability of organic matter and sulphate is high in June after the crash of the Peridinium bloom and the beginning of stratification and is lowest in December before overturn. 3. Sulphate concentrations in the hypolimnion range between 0.52 mM and 0.20 mM during mixing (January-April) and before overturn (December), respectively. The depletion in sulphate in the hypolimnion is stoichiometrically correlated to the increase in sulphide. The lake is not depleted of sulphate at any time, so the sulphate reduction process in Lake Kinneret is not limited by sulphate concentrations except in the sediments just before overturn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号