首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A principal target for the environmental toxin lead (Pb) is porphobilinogen synthase (PBGS), a Zn-metalloenzyme necessary for heme biosynthesis. Measurement of blood Pb inhibited PBGS is the most sensitive indicator of subclinical Pb intoxication, but problems with the assay have diminished its use. This report identifies Pb as a slow acting inhibitor of PBGS. The activity of PBGS could change up to sixfold during an hourlong clinical assay of Pb contaminated blood, and activity is profoundly effected by the presence of serum proteins, such as albumin. When PBGS catalyzed PBG production is allowed to reach a steady state rate, kinetic data on purified PBGS support the hypothesis that Pb inhibition of PBGS results from direct substitution for Zn.  相似文献   

2.
Porphobilinogen synthase (PBGS) is an ancient enzyme essential to tetrapyrrole biosynthesis (e.g. heme, chlorophyll, and vitamin B(12)). Two common alleles encoding human PBGS, K59 and N59, have been correlated with differential susceptibility of humans to lead poisoning. However, a model for human PBGS based on homologous crystal structures shows the location of the allelic variation to be distant from the active site with its two Zn(II). Previous microbial expression systems for human PBGS have resulted in a poor yield. Here, an artificial gene encoding human PBGS was constructed by recursive polymerase chain reaction from synthetic oligonucleotides to rectify this problem. The artificial gene was made to resemble the highly expressed homologous Escherichia coli hemB gene and to remove rare codons that can confound heterologous protein expression in E. coli. We have expressed and purified recombinant human PBGS variants K59 and N59 in 100-mg quantities. Both human PBGS proteins purified with eight Zn(II)/octamer; Zn(II) binding was shown to be pH-dependent; and Pb(II) could displace some of the Zn(II). However, there was no differential displacement of Zn(II) by Pb(II) between K59 and N59, and simple Pb(II) inhibition studies revealed no allelic difference.  相似文献   

3.
Porphobilinogen synthase (PBGS) is a Zn(II) metalloenzyme which catalyzes the asymmetric condensation of two molecules of 5-aminolevulinate (ALA). The nitrogen of the first substrate ends up in the pyrrole ring of product (P-side ALA); by contrast, the nitrogen of the second substrate molecule remains an amino group (A-side ALA). A reactive mimic of the substrate molecules, 5-chlorolevulinate (5-CLA), has been prepared and used as an active site directed irreversible inhibitor of PBGS. Native octameric PBGS binds eight substrate molecules and eight Zn(II) ions, with two types of sites for each ligand. As originally demonstrated by Seehra and Jordan [(1981) Eur. J. Biochem. 113, 435-446], 5-CLA inactivates the enzyme at the site where one of the two substrate molecules binds, and modification at four sites per octamer (one per active site) affords near-total inactivation. Here we report that 5-CLA-modified PBGS (5-CLA-PBGS) can bind up to four substrate molecules and four Zn(II) ions. Contrary to the conclusion of Seehra and Jordan, we find that the preferential site of 5-CLA inactivation is the A-side ALA binding site. On the basis of the dissociation constants, the metal ion binding sites lost upon 5-CLA modification are assigned to the four catalytic Zn(II) sites. 5-CLA-PBGS is shown to be modified at cysteine-223 on half of the subunits. We conclude that cysteine-223 is near the amino group of A-side ALA and propose that this cysteine is a ligand to the catalytic Zn(II). The vacant substrate binding site on 5-CLA-PBGS is that of P-side ALA. We have used 13C and 15N NMR to view [4-13C]ALA and [15N]ALA bound to 5-CLA-PBGS. The NMR results are nearly identical to those obtained previously for the enzyme-bound P-side Schiff base intermediate [Jaffe et al. (1990) Biochemistry 29, 8345-8350]. It appears that, in the absence of the catalytic Zn(II), 5-CLA-PBGS does not catalyze the condensation of the amino group of the P-side Schiff base intermediate with the C4 carbonyl derived from 5-CLA. On this basis we propose that Zn(II) plays an essential role in formation of the first bond between the two substrate molecules.  相似文献   

4.
Vogel A  Schilling O  Meyer-Klaucke W 《Biochemistry》2004,43(32):10379-10386
Zinc phosphodiesterase (ZiPD) is a member of the metallo-beta-lactamase family with a binuclear zinc binding site. As an experimental attempt to identify the metal ligands of Escherichia coli ZiPD and to investigate their function in catalysis, we mutationally exchanged candidate metal coordinating residues and performed kinetic and X-ray absorption spectroscopic analysis of the mutant proteins. All mutants (H66E, H69A, H141A, D212A, D212C, H231A, H248A, and H270A) show significantly lower catalytic rates toward the substrate bis(p-nitrophenyl)phosphate. Substrate binding, represented by the kinetic value K', remains unchanged for six mutants, whereas it is increased 3-4-fold for H231A and H270A. Accordingly, these two residues are supposed to be involved in substrate binding, whereas the others are more important for catalytic turnover and thus are assumed to be involved in zinc ligation. Structural insight into the metal binding of D212 was gained by zinc K-edge extended X-ray absorption fine structure (EXAFS). The sulfur coordination number of the cysteine mutant was found to be 1, demonstrating binding to both zinc metals in a bridging mode. Taken together with two residues from a strictly conserved sequence region within the metallo-beta-lactamase family, the metal site of ZiPD is proposed with H64, H66, and H141 coordinating ZnA, D68, H69, and H248 coordinating ZnB, and D212 bridging both metals. Surprisingly, the same coordination sphere is found in glyoxalase II. This is further substantiated by comparable EXAFS spectra of both native enzymes. This is the first example of the same metal site in two members of the metallo-beta-lactamase domain proteins catalyzing different reactions. The kinetic analysis of mutants provides unexpected insights into the reaction mechanism of ZiPD.  相似文献   

5.
Metal ions are indispensable cofactors for chemical catalysis by a plethora of enzymes. Porphobilinogen synthases (PBGSs), which catalyse the second step of tetrapyrrole biosynthesis, are grouped according to their dependence on Zn(2+). Using site-directed mutagenesis, we embarked on transforming Zn(2+)-independent Pseudomonas aeruginosa PBGS into a Zn(2+)-dependent enzyme. Nine PBGS variants were generated by permutationally introducing three cysteine residues and a further two residues into the active site of the enzyme to match the homologous Zn(2+)-containing PBGS from Escherichia coli. Crystal structures of seven enzyme variants were solved to elucidate the nature of Zn(2+) coordination at high resolution. The three single-cysteine variants were invariably found to be enzymatically inactive and only one (D139C) was found to bind detectable amounts of Zn(2+). The double mutant A129C/D139C is enzymatically active and binds Zn(2+) in a tetrahedral coordination. Structurally and functionally it mimics mycobacterial PBGS, which bears an equivalent Zn(2+)-coordination site. The remaining two double mutants, without known natural equivalents, reveal strongly distorted tetrahedral Zn(2+)-binding sites. Variant A129C/D131C possesses weak PBGS activity while D131C/D139C is inactive. The triple mutant A129C/D131C/D139C, finally, displays an almost ideal tetrahedral Zn(2+)-binding geometry and a significant Zn(2+)-dependent enzymatic activity. Two additional amino acid exchanges further optimize the active site architecture towards the E.coli enzyme with an additional increase in activity. Our study delineates the potential evolutionary path between Zn(2+)-free and Zn(2+)-dependent PBGS enyzmes showing that the rigid backbone of PBGS enzymes is an ideal framework to create or eliminate metal dependence through a limited number of amino acid exchanges.  相似文献   

6.
N Frankenberg  D Jahn  E K Jaffe 《Biochemistry》1999,38(42):13976-13982
Porphobilinogen synthases (PBGS) are metalloenzymes that catalyze the first common step in tetrapyrrole biosynthesis. The PBGS enzymes have previously been categorized into four types (I-IV) by the number of Zn(2+) and/or Mg(2+) utilized at three different metal binding sites termed A, B, and C. In this study Pseudomonas aeruginosa PBGS is found to bind only four Mg(2+) per octamer as determined by atomic absorption spectroscopy, in the presence or absence of substrate/product. This is the lowest number of bound metal ions yet found for PBGS where other enzymes bind 8-16 divalent ions. These four Mg(2+) allosterically stimulate a metal ion independent catalytic activity, in a fashion dependent upon both pH and K(+). The allosteric Mg(2+) of PBGS is located in metal binding site C, which is outside the active site. No evidence is found for metal binding to the potential high-affinity active site metal binding sites A and/or B. P. aeruginosa PBGS was investigated using Mn(2+) as an EPR probe for Mg(2+), and the active site was investigated using [3,5-(13)C]porphobilinogen as an NMR probe. The magnetic resonance data exclude the direct involvement of Mg(2+) in substrate binding and product formation. The combined data suggest that P. aeruginosa PBGS represents a new type V enzyme. Type V PBGS has the remarkable ability to synthesize porphobilinogen in a metal ion independent fashion. The total metal ion stoichiometry of only 4 per octamer suggests half-sites reactivity.  相似文献   

7.
8.
9.
Human porphobilinogen synthase (PBGS) can exist in two dramatically different quaternary structure isoforms, which have been proposed to be in dynamic equilibrium. The quaternary structure isoforms of PBGS result from two alternative conformations of the monomer; one monomer structure assembles into a high activity octamer, whereas the other monomer structure assembles into a low activity hexamer. The kinetic behavior of these oligomers led to the hypothesis that turnover facilitates the interconversion of the oligomeric structures. The current work demonstrates that the interactions of ligands at the enzyme active site promote the structural interconversion between human PBGS quaternary structure isoforms, favoring formation of the octamer. This observation illustrates that the assembly and disassembly of oligomeric proteins can be facilitated by the protein motions that accompany enzymatic catalysis.  相似文献   

10.
Porphobilinogen synthase (PBGS) is a homo-octameric protein that catalyzes the complex asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). The only characterized intermediate in the PBGS-catalyzed reaction is a Schiff base that forms between the first ALA that binds and a conserved lysine, which in Escherichia coli PBGS is Lys-246 and in human PBGS is Lys-252. In this study, E. coli PBGS mutants K246H, K246M, K246W, K246N, and K246G and human PBGS mutant K252G were characterized. Alterations to this lysine result in a disabled but not totally inactive protein suggesting an alternate mechanism in which proximity and orientation are major catalytic devices. (13)C NMR studies of [3,5-(13)C]porphobilinogen bound at the active sites of the E. coli PBGS and the mutants show only minor chemical shift differences, i.e. environmental alterations. Mammalian PBGS is established to have four functional active sites, whereas the crystal structure of E. coli PBGS shows eight spatially distinct and structurally equivalent subunits. Biochemical data for E. coli PBGS have been interpreted to support both four and eight active sites. A unifying hypothesis is that formation of the Schiff base between this lysine and ALA triggers a conformational change that results in asymmetry. Product binding studies with wild-type E. coli PBGS and K246G demonstrate that both bind porphobilinogen at four per octamer although the latter cannot form the Schiff base from substrate. Thus, formation of the lysine to ALA Schiff base is not required to initiate the asymmetry that results in half-site reactivity.  相似文献   

11.
The zinc metalloenzyme porphobilinogen synthase (PBGS) contains several functionally important, but previously unidentified, reactive sulfhydryl groups. The enzyme has been modified with the reversible sulfhydryl-specific nitroxide spin label derivative of methyl methanethiosulfonate (MMTS), (1-oxyl-2,2,5,5-tetramethyl-delta 3-pyrroline-3-methyl)methanethiosulfonate (SL-MMTS) (Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K., 1982, Anal. Biochem. 119, 450-455). EPR spectra show that SL-MMTS labels three groups per PBGS subunit (24 per octamer), as does MMTS. EPR signals reflecting nitroxides of different mobilities are observed. Two of the three modified cysteines have been identified as Cys-119 and Cys-223 by sequencing peptides produced by an Asp-N protease digest of the modified protein. Because MMTS-reactive thiols have been implicated as ligands to the required Zn(II), EPR spectroscopy has been used to determine the spatial proximity of the modified cysteine residues. A forbidden (delta m = 2) EPR transition is observed indicating a through-space dipolar interaction between at least two of the nitroxides. The relative intensity of the forbidden and allowed transitions show that at least two of the unpaired electrons are within at most 7.6 A of each other. SL-MMTS-modified PBGS loses all Zn(II) and cannot catalyze product formation. The modified enzyme retains the ability to bind one of the two substrates at each active site. Binding of this substrate has no influence on the EPR spectral properties of the spin-labeled enzyme, or on the rate of release of the nitroxides when 2-mercaptoethanol is added.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Porphobilinogen synthase (PBGS) proteins fall into several distinct groups with different metal ion requirements. Drosophila melanogaster porphobilinogen synthase (DmPBGS) is the first non-mammalian metazoan PBGS to be characterized. The sequence shows the determinants for two zinc binding sites known to be present in both mammalian and yeast PBGS, proteins that differ in the exhibition of half-of-the-sites metal binding. The pH-dependent activity of DmPBGS is uniquely affected by zinc. A tight binding catalytic zinc binds at 0.5/subunit with a Kd well below microm. A second inhibitory zinc exhibits a Kd of approximately 5 microm and appears to bind at a stoichiometry of 1/subunit. A molecular model of DmPBGS suggests that the inhibitory zinc is located at a subunit interface using Cys-219 and His-10 as ligands. Zinc binding to this previously unknown inhibitory site is proposed to inhibit opening of the active site lid. As predicted, the DmPBGS mutant H10F is active but is not inhibited by zinc. H10F binds a catalytic zinc at 0.5/subunit and binds a second nonessential and noninhibitory zinc at 0.5/subunit. This result reveals a structural basis for half-of-the-sites metal binding that is consistent with a reciprocating motion model for function of oligomeric PBGS.  相似文献   

13.
Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329–337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of ∼111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90–100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme.  相似文献   

14.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). The interactions of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II) have been studied by using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. The binding modes of the species [CuAH](2+) and [CuA](+) were characterized by histamine type of coordination. [CuA](+) is further stabilized by the formation of a macrochelate with the involvement of the imidazole of the C-terminal histidine. The existence of macrochelate results in a slight distortion of the coordination geometry providing good base for the development of enzyme models. The enhanced stability of the macrochelate suppresses the formation of bis-complexes as well as the amide deprotonation. This process, however, takes place at higher pH resulting in the formation of the 4 N(-) coordinated [NH(2),N(-),N(-),N(im)] species [CuAH(2-)](-). On the other hand, in the case of the Zn(II)-His-Val-Gly-Asp system, coordination takes place at the terminal carboxylate in species [ZnBH(2)](2+). Monodentate binding occurs via the N-terminal imidazole in [ZnBH](+) while histamine type of coordination is possible in [ZnB], [ZnB(2)H](-) and [ZnB(2)](2-) species. Amide deprotonation does not take place in the case of Zn(2+), hydroxo-complexes are formed instead.  相似文献   

15.
Liu J  Stemmler AJ  Fatima J  Mitra B 《Biochemistry》2005,44(13):5159-5167
ZntA from Escherichia coli, a P1-type ATPase, specifically transports Pb(II), Zn(II), and Cd(II). Most P1-type ATPases have an N-terminal domain that contains one or more copies of the conserved metal-binding motif, GXXCXXC. In ZntA, the N-terminal domain has approximately 120 residues with a single GXXCXXC motif, as well as four additional cysteine residues as part of the CCCDGAC motif. The metal-binding specificity and affinity of this domain in ZntA was investigated. Isolated proteins, N1-ZntA and N2-ZntA, containing residues 1-111 and 47-111 of ZntA, respectively, were characterized. N1-ZntA has both the CCCDGAC and GXXCXXC motifs, while N2-ZntA has only the GXXCXXC motif. ICP-MS measurements showed that N1-ZntA can bind both divalent metal ions such as Cd(II), Pb(II), and Zn(II) and monovalent metal ions such as Ag(I), with a stoichiometry of 1. N2-ZntA can bind Zn(II) and Cd(II) with a stoichiometry of 1 but not Pb(II). The affinity of N1-ZntA for Zn(II), Pb(II), and Cd(II) was measured by competition titration with metallochromic indicators. Association constants of approximately 10(8) M(-)(1) were obtained for Zn(II), Pb(II), and Cd(II) binding to N1-ZntA. To investigate whether the CCCDGAC sequence has an important role in binding specifically Pb(II), a mutant of ZntA, which lacked the first 46 residues, was constructed. This mutant, Delta46-ZntA, had the same activity as wtZntA with respect to Cd(II) and Zn(II). However, its activity with Pb(II) was similar to the mutant DeltaN-ZntA, which lacks the entire N-terminal domain (Mitra, B., and Sharma, R. (2001) Biochemistry 40, 7694-7699). Thus, binding of Pb(II) appears to involve different ligands, and possibly geometry, compared to Cd(II) and Zn(II).  相似文献   

16.
5-Aminolevulinate dehydratase from bovine liver requires Zn(II) for its activity and is inhibited by micromolecular concentrations of Pb(II). To elucidate the structure of the active site and its interactions between the active site and the metal binding site we labeled the active site for fluorescence studies and ESR spectroscopy. o-Phthalaldehyde reacted with active site lysyl and cysteinyl residues to form a fluorescent isoindole derivative. The fluorescence energy was independent of the deprivation of Zn(II) and of its substitution by the inhibitory Pb(II). For ESR-studies five iodoacetamide and four isothiocyanate pyrrolidine-N-oxyl derivatives with various spacer lengths were used to label the active site cysteinyl and lysyl residues, respectively. The ESR spectra of the modified enzyme preparations exhibited a significant immobilization of all labels, even with the longest spacers employed. Obviously the reactive cysteine is buried more than 12 A, and the active site lysine more than 11 A in a cleft of the enzyme structure. Zn(II) deprivation from the iodoacetamide spin-labeled enzyme caused a marked reversible increase in label mobility, whereas the Pb(II) substituted enzyme exhibited a smaller mobilization of the label. These results are interpreted by a model of the active site where the reactive cysteinyl and the lysyl side groups are close enough to be crosslinked by o-phthalaldehyde within a distance of 3 A. A structural role is assigned to Zn(II) in the enzyme, since Zn(II) deprivation does not alter the fluorescence of the isoindole derivative and increases the mobility of the cysteine-bound spin labels in the active site cleft.  相似文献   

17.
N Frankenberg  D W Heinz  D Jahn 《Biochemistry》1999,38(42):13968-13975
During tetrapyrrole biosynthesis the metalloenzyme porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of 5-aminolevulinic acid to form the pyrrole porphobilinogen. Pseudomonas aeruginosa PBGS was synthesized in Escherichia coli, and the enzyme was purified as a fusion protein with glutathione S-transferase (GST). After removal of GST, a molecular mass of 280 000 +/- 10 000 with a Stokes radius of 57 A was determined for native PBGS, indicating a homooctameric structure of the enzyme. Mg2+ stabilized the oligomeric state but was not essential for octamer formation. Alteration of N-terminal amino acids changed the oligomeric state and reduced the activity of the enzyme, revealing the importance of this region for oligomerization and activity. EDTA treatment severely inhibited enzymatic activity which could be completely restored by the addition of Mg2+ or Mn2+. At concentrations in the micromolar range Co2+, Zn2+, and Ni2+ partially restored EDTA-inhibited enzymatic activity while higher concentrations of Zn2+ inhibited the enzyme. Pb2+, Cd2+, and Hg2+ did not restore activity. A stimulatory effect of monovalent ions was observed. A Km of 0.33 mM for ALA and a maximal specific activity of 60 micromol h-1 mg-1 at the pH optimum of 8.6 in the presence of Mg2+ and K+ were found. pH-dependent kinetic studies were combined with protein modifications to determine the structural basis of two observed pKa values of approximately 7.9 (pKa1) and 9.5 (pKa2). These are postulated respectively as ionization of an active site lysine residue and of free substrate during catalysis. Some PBGS inhibitors were characterized. Finally, we succeeded in obtaining well-ordered crystals of P. aeruginosa PBGS complexed with the substrate analogue levulinic acid.  相似文献   

18.
Shi YY  Tang W  Hao SF  Wang CC 《Biochemistry》2005,44(5):1683-1689
Escherichia coli DnaJ, possessing both chaperone and thiol-disulfide oxidoreductase activities, is a homodimeric Hsp40 protein. Each subunit contains four copies of a sequence of -CXXCXGXG-, which coordinate with two Zn(II) ions to form an unusual topology of two C4-type zinc fingers, C144DVC147Zn(II)C197NKC200 (Zn1) and C161PTC164Zn(II)C183PHC186 (Zn2). Studies on five DnaJ mutants with Cys in Zn2 replaced by His or Ser (C183H, C186H, C161H/C183H, C164H/183H, and C161S/C164S) reveal that substitutions of one or two Cys residues by His or Ser have little effect on the general conformation and association property of the molecule. Replacement of two Cys residues by His does not interfere with the zinc coordination. However, replacement of two Cys by Ser results in a significant decrease in the proportion of coordinated Zn(II), although the unique zinc finger topology is retained. The mutants of C183H, C186H, and C161S/C164S display full disulfide reductase activity of wild-type DnaJ, while C161H/C183H and C164H/183H exhibit severe defect in the activity. All of the mutations do not substantially affect the chaperone activity. The results indicate that the motif of -CXXC- is critical to form an active site and indispensable to the thiol-disulfide oxidoreductase activity of DnaJ. Each -CXXC- motif in Zn2 but not in Zn1 functions as an active site.  相似文献   

19.
The [NiFe]-hydrogenase protein produced by many types of bacteria contains a dinuclear metal center that is required for enzymatic activity. Assembly of this metal cluster involves the coordinated activity of a number of helper proteins including the accessory protein, HypB, which is necessary for Ni(II) incorporation into the hydrogenase proteins. The HypB protein from Escherichia coli has two metal-binding sites, a high-affinity Ni(II) site that includes ligands from the N-terminal domain and a low-affinity metal site located within the C-terminal GTPase domain. In order to determine the physiological relevance of the two separate sites, hydrogenase production was assessed in strains of E. coli expressing wild-type HypB, the isolated GTPase domain, or site-directed mutants of metal-binding residues. These experiments demonstrate that both metal sites of HypB are critical for the maturation of the hydrogenase enzymes in E. coli. X-ray absorption spectroscopy of purified proteins was used to examine the detailed coordination spheres of each nickel-loaded site. In addition, because the low-affinity metal site has a stronger preference for Zn(II) than Ni(II), the ligands and geometry for this metal were also resolved. The results from these experiments are discussed in the context of a mechanism for Ni(II) insertion into the hydrogenase protein.  相似文献   

20.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号