首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are reports showing interactive effect of environmental factors with the toxic outcome of chemicals. We studied the interactive effect of elevated temperature as an abiotic stressor on deltamethrin-induced biochemical stress responses in a freshwater fish, Channa punctata Bloch. Heat stress (∼12 °C above ambient temperature for 3 h) and pesticide exposure (deltamethrin 0.75 ppb for 48 h) showed significant induction of heat shock protein-70 (HSP70) in liver, kidney and gills of fishes. Elevated temperature when followed by deltamethrin exposure showed synergistic effect showing a high level of HSP70 in liver and gills whereas response in the kidney was opposite. On the contrary, when deltamethrin exposure followed the heat stress, no significant difference was observed. Protein carbonylation was found to be more pronounced in heat-stressed group compared with control fish group. A significant increase in lipid peroxidation (LPO) was observed in different tissues of fish exposed to either of the stressors. In the kidney of fish exposed to heat stress followed by deltamethrin, LPO was relatively lower as compared to other treatments. Thiols content such as reduced glutathione (GSH), total thiols (T-SH), non-protein thiols (NP-SH) and protein thiols (P-SH) showed no consistent pattern in different tissues. In deltamethrin-exposed group that was subsequently exposed to heat stress, the GSH content was higher in liver and lower in both kidney and gills when compared with other groups. Alteration in the activities of antioxidant enzymes such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) was also observed when fish were exposed to heat stress and/or deltamethrin. Our study demonstrated that heat stress modulated biochemical stress responses in fish showing a tissue specific pattern. This implies that fish has the capacity to elicit differential response to exposure to abiotic stressors in order to reduce the systemic magnitude of stress which may otherwise lead to severe dysfunction of vital tissues.  相似文献   

2.
The phenomenon of oxygen tolerance (resistance to 100% O(2) in rats previously exposed to 85% O(2)) constitutes one of the few models of adaptive responses to oxidative stress in mammals. In vitro studies suggest that reactive oxygen species mediate this response. To test this hypothesis in vivo, we followed the time course of oxidative stress, enzyme induction, and edema in the lung, heart and liver of rats exposed to 85% O(2) for 1 to 5 days. Interestingly, not only the lung, but also the heart of rats exposed to 85% O(2) showed increases in the production of O(*-)(2) (aconitase inactivation) early during the exposure. Increases in O(*-)(2) were associated to oxidative stress (increased in situ chemiluminescence) and transient edema in both tissues. Both the lung and heart displayed induction of superoxide dismutase and reversion of the oxidative stress and damage. The adaptive response in the heart was faster and more efficient, suggesting that this tissue is at a more critical risk when exposed to elevated O(2) concentrations.  相似文献   

3.
4.
Ostreopsis lenticularis Fukuyo 1981, is the major benthic dinoflagellate vector implicated in ciguatera fish poisoning in finfish on the southwest coast of Puerto Rico. Clonal laboratory cultures of O. lenticularis (clone 301) exposed to elevated temperatures (30-31 degrees C) for 33 and 54 days showed significant increases in the quantity of extractable toxin they produced as compared to their toxicities versus cells grown at temperatures of 25-26 degrees C. O lenticularis samples collected directly from the field following exposure to elevated temperatures for comparable periods of time also showed significant increases in extractable toxin. The increased toxicity of both field sampled and laboratory grown O. lenticularis exposed to elevated temperatures may result from the effects of elevated temperatures on their metabolism and/or the bacterial symbionts found associated with these microalgae. The number of bacteria associated with cultured O. lenticularis exposed to elevated temperatures was significantly reduced. Increased toxin recovery from O. lenticularis exposed to elevated temperatures may have resulted from the direct effect of temperature on toxin production and/or the reduction of Ostreopsis associated bacterial flora that consume toxin in the process of their growth. This reduction in the quantity of associated bacterial flora in temperature treated cultures may result in increased toxin recovery from O. lenticularis due to a reduction in the consumption of toxin by these symbiont bacteria.  相似文献   

5.
In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium oncentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.  相似文献   

6.
Pentachlorophenol (PCP) is widely used to control termites and protect wood from fungal-rot and wood-boring insects, and is often detected in the aquatic environment. Few studies have evaluated PCP as an environmental endocrine disruptor. In the present work, Japanese medaka (Oryzias latipes) was exposed to PCP for 28 days (F0 generation) with subsequent measurements of vitellogenin (VTG), hepatic 7-ethoxyresorufin-O-deethylase (EROD), and reproductive endpoints. Plasma VTG significantly increased in male fish treated with PCP concentrations lower than 200 microg/l and decreased in male and female animals exposed to 200 microg/l. Hepatic EROD from female fish increased when PCP exposure concentrations exceeded 20 microg/l, but decreased in the 200 microg/l PCP treatment group. Fecundity and mean fertility of female medaka decreased significantly in the second and third week following exposure concentrations greater than 100 microg/l, and testis-ova of male medaka was observed at PCP concentrations greater than 50 microg/l. Histological lesions of liver and kidney occurred when exposure concentrations exceeded 50 microg/l. In F1 generations, the hatching rates and time to hatch of offspring were significantly affected in fish exposed to 200 microg/l. These results indicated that PCP exposure caused responses consistent with estrogen and aryl hydrocarbon receptor activation as well as reproductive impairment at environmentally relevant concentrations.  相似文献   

7.
Oryzias latipes (Adrianichthyidae), known as Japanese medaka or Japanese killifish, is a small 2-4 cm long fish common in rice paddies in coastal Southeast Asia and is also a popular aquarium fish. It has been widely used as a research model because of its small size and because it is very easy to rear. Alkalinity stress is considered to be one of the major stressors on fish in saline-alkaline water. As very little is known about molecular genetic responses of aquatic organisms to alkalinity stress, we examined genome-wide gene expression profiles of Japanese medaka in response to carbonate alkalinity stress. Adult fish were exposed to freshwater and high carbonate alkaline water in the laboratory. We designed a microarray containing 26,429 genes for measuring gene expression change in the gills of the fish exposed to high carbonate alkalinity stress. Among these genes, 512 were up-regulated and 501 were down-regulated in the gills. These differentially expressed genes can be divided into gene groups using gene ontology, including biological processes, cellular components and molecular function. These gene groups are related to acid-base and ion regulation, cellular stress response, metabolism, immune response, and reproduction processes. Biological pathways including amino sugar and nucleotide sugar metabolism, porphyrin and chlorophyll metabolism, metabolism of xenobiotics by cytochrome P450, drug metabolism, aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions, glutathione metabolism, and fructose and mannose metabolism were significantly up-regulated. Alkalinity stress stimulates the energy and ion regulation pathways, and it also slows down the pathways related to the immune system and reproduction.  相似文献   

8.
Yang Y  Xu S  An L  Chen N 《Journal of plant physiology》2007,164(11):1429-1435
Hydrogen peroxide (H(2)O(2)) is often generated by cells and tissues under environmental stress. In this work, we provide evidence that plasma membrane (PM) NADPH oxidase-dependent H(2)O(2) production might act as an intermediate step in the NaCl-induced elevation of calcium (Ca) in roots of wheat. Remarkable increases in the content of total Ca were observed not only in roots exposed to NaCl but also in roots of seedlings exposed to exogenous H(2)O(2). In roots, H(2)O(2) production increased upon exposure to salt stress. PM vesicles were isolated from roots, and NADPH oxidase activity was determined by measuring superoxide anion (O(2)(-)) production. NADPH oxidase-dependent O(2)(-) production was 11.6nmolmg(-1)proteinmin(-1) in control vesicles, but 19.6nmol after NaCl treatment (24h), indicating that salt stress resulted in the activation of the PM NADPH oxidase. Furthermore, the NaCl-induced increase in total Ca was partially abolished by the addition of 150U/mL catalase (CAT), a H(2)O(2) scavenger, and also by 10microM diphenylane iodonium (DPI), a NADPH oxidase inhibitor. This data suggest that NADPH oxidase-dependent H(2)O(2) production might be involved in the modulation of the Ca content in wheat roots. In conclusion, our results show that salinity stress increases the total Ca content of wheat roots, which is partly due to PM NADPH oxidase-dependent H(2)O(2) generation.  相似文献   

9.
Species- and tissue-specific defenses against the possibility of oxidative stress and lipid peroxidation were compared in adult fish, Oreochromis niloticus and Cyprinus carpio, exposed to 2,4-dichlorophenoxyacetic acid (2,4-D), azinphosmethyl and their combination for 96 h. Superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase activities were monitored in kidney, brain and gill. In all exposure groups there was a marked increase in SOD activity in gill tissues in both fish species, while it was at the control level in other tissues. The highest elevation of SOD activity by combined treatment was observed in C. carpio. Individual and combined treatments caused an elevation in catalase and GPx activities in kidney of C. carpio. Catalase activity was unaffected in brain of O. niloticus, while GPx activity was decreased after all treatments. Glutathione S-transferase (GST) activity was higher than the control levels in kidney of both fish exposed to pesticides. No significant changes were observed in malondialdehyde level in kidney and brain of C. carpio. Our results indicate that the toxicities of azinphosmethyl and 2,4-D may be related to oxidative stress. Also, the results show that SOD activity in gill and GST activity in kidney may be used as biomarkers for pollution monitoring and indicate that the activities of certain biomarkers in C. carpio are more sensitive to pesticides than those in O. niloticus.  相似文献   

10.
Two indigenous fish species, brown trout (Salmo trutta f. fario) and stone loach(Barbatula barbatula) were exposed tocomplex stressors (mixtures of environmentalpollutants) in laboratory and semi-fieldexperiments (aquaria connected to stream water)and in field studies. As a biomarker of effect,the level of the 70 kD heat shock protein(hsp70) was quantified in the liver of troutand loach. Laboratory experiments withdifferent pollutant mixtures did not mimic thehsp70-inducing or inhibiting potential of fieldconditions, whereas effects of long-termexposure in the bypass systems showed asignificant correlation with effects recordedin feral fish. Laboratory as well as semi-fieldstudies revealed the stress response to followan optimum curve, resulting in a maximum hsp70level under stress but rather low hsp70 levelswhen stressors (chemicals, high temperature)become too severe. Consequently, the hsp70level in the liver of both species was highlyseason-dependent with two peaks in late springand fall, and rather low hsp70 levels insummer, particularly in fish exposed to waterand sediment of the complexly polluted stream.In winter, the low hsp70 level of lab controlswas elevated by exposure to natural streamwater only, but elevation did not occur undercontrol conditions independent of apre-exposure to polluted streamwater two months earlier. Despite the highvariability of the hsp70 level within one yearand among five subsequent years, patternanalysis indicated the prevailing importance ofwater temperature on stress protein response.Temperature alone, however, could not explainthe regularly observed low summer levels inhsp70. Non-linear regression analysis on labcontrols revealed an optimum temperature(Topt) for the highest hsp70 level forboth fish species. In both investigated streams, thechemical influence led to a decrease in thehsp70 level only when Topt was surpassedby the ambient temperature at the same time.Otherwise, the chemical impact resulted in anelevated hsp70 level relative to the control.The study demonstrated the suitability of hsp70stress protein levels to integrate the responsedynamics of several different stressors and,therefore, to effectively function as abiomarker for the integrated effect of allenvironmental stressors acting on an organism(not only of chemical pollution). Rathercomplex kinetics of hsp70 elevation anddecrease should be taken into consideration.  相似文献   

11.
Temperature and trace metals are common environmental stressors, and their importance is increasing due to global climate change and anthropogenic pollution. Oxidative damage and antioxidant properties have been studied in liver and gills of the European bullhead (Cottus gobio) subjected to cadmium (CdCl(2) at nominal concentrations of 0.01 and 1mg/L) for 4 days at either 15°C or 21°C. First, exposure to 1mg Cd/L induced a high mortality rate (67%) in fish held at 21°C. Regarding the antioxidant enzymes, exposure to 0.01 mg Cd/L significantly increased the activity of superoxide dismutase (SOD) and decreased the activity of glutathione reductase (GR) in liver, independently of heat stress. In gills, exposure to 21°C resulted in a significantly increased activity of glutathione peroxidase (GPx), whereas the activity of glutathione S-transferase (GST) was significantly reduced as compared to fish exposed to 15°C. Furthermore, regardless of Cd stress, exposure to elevated temperature resulted in a significant decrease of lipid peroxidation (LPO) level in liver and in a significant increase in the activity of chymotrypsin-like 20S proteasome in both studied tissues of C. gobio. Overall, the present results indicated that elevated temperature and cadmium exposure independently influenced the antioxidant defense system in bullhead with clear tissue-specific and stress-specific antioxidant responses. Further, elevated temperature affected the hepatic lipid peroxidation and the activity of 20S proteasome in both tissues.  相似文献   

12.
Valacchi G  Weber SU  Luu C  Cross CE  Packer L 《FEBS letters》2000,466(1):165-168
As the outermost layer of the skin, the stratum corneum is exposed to environmental oxidants. To investigate putative synergisms of environmental oxidative stressors in stratum corneum, hairless mice were exposed to ultraviolet radiation (UV) and ozone (O(3)) alone and in combination. Whereas a significant depletion of alpha-tocopherol was observed after individual exposure to either a 0.5 minimal erythemal dose of UV or 1 ppm O(3) for 2 h, the combination did not increase the effect of UV alone. However, a dose of 0.5 ppm O(3) x 2 h, which had no effect when used alone, significantly enhanced the UV-induced depletion of vitamin E. We conclude that concomitant exposure to low doses of UV and O(3) at levels near those that humans can be exposed to causes additive oxidative stress in the stratum corneum.  相似文献   

13.
14.
Metabolic scope for activity (MSA) and critical swimming velocity (U(crit)) were measured in green sturgeon exposed to two stressors daily for 28 consecutive days. The results were compared with unstressed fish in an effort to measure the "cost" of chronic stress. Chronic stress was simulated by exposing fish to a randomized order of acute stressors: a 5-min chasing stressor, a 10-min water depth reduction stressor, or a 5-min confinement stressor. The acute cortisol response to each stressor was initially determined, and the maintenance of that response was verified in 7-d intervals during the chronic stress regime. Exposure to the chronic stress regime resulted in a 25% reduction of MSA caused by significantly increased maintenance metabolic rate (0.27+/-0.01 vs. 0.19+/-0.02 mg O(2) h(-1) g(-1), chronic and control fish, respectively) but did not affect the U(crit) of sturgeon. In addition, a 50% reduction in liver glycogen levels and a twofold increase of resting plasma glucose levels were measured in chronically stressed fish. We conclude that our chronic stress regime resulted in a significant maintenance cost to green sturgeon, possibly because of their inability to habituate to the stressors, but did not decrease their swimming performance.  相似文献   

15.
Hypoxia, which occurs frequently in aquatic ecosystems and is mainly due to increasing eutrophication can cause severe environmental stress in fish. We investigated experimentally the hypothesis that hypoxia could be one of the environmental stress factors that can induce papillomatosis in fish. Male roach Rutilus rutilus exposed to periodic oxygen deficiency and accompanied temperature increases (OT group) showed the highest increase in the intensity of papillomatosis, as measured by the number of scales covered by papillomatosis tumors. The second highest increase in disease intensity was among male roach exposed to periodical temperature increases. The incidence of such tumors was lowest in the control group, which was exposed to neither hypoxia nor increased temperature. The mortality of fish during the 17 d experiment was highest and the condition factor was lowest in the OT group, indicating this group experienced a higher level of stress. The apparent interaction of hypoxia and temperature suggests that these environmental stressors are among the multifactorial elements leading to papillomatosis in roach. Furthermore, these results provide experimental evidence to indicate that hypoxia may contribute to tumor development in fish.  相似文献   

16.
Several in vitro studies were performed to study the cellular reaction of European sea bass (Dicentrarchus labrax L.) against Sphaerospora dicentrarchi. Head kidney phagocytes were obtained from parasitised (P) and non-parasitised (NP) fish. The production of superoxide anion (O2-), tested by the NBT method, was higher in P than in NP fish. The addition of increasing amounts of sea bass serum (SBS) produced a gradual increment of the respiratory burst with SBS from parasitised animals (P-SBS), whereas this increment reached a plateau at lower concentration with SBS from nonparasitised ones (NP-SBS). O2- production was higher when adding NP-SBS than with P-SBS or fetal bovine serum. Heat inactivation of NP-SBS and FBS reduced the respiratory burst significantly, whereas it did not change the effect of P-SBS. The number of NBT-positive cells after particulate stimulation was significantly higher using S. dicentrarchi spores than using SRBC, but lower than with phorbol myristate acetate. Phagocytes primed overnight with spore extracts produced higher amounts of O2- than those LPS-primed or non-primed ones. A similar percentage of phagocytosis was detected using glutaraldehyde fixed spores and SRBC. Most of the phagocytes engulfed three or more SRBC, whereas most of the phagocytes engulfed only one spore. Complement mediated opsonisation by NP-SBS may occur, as the phagocytic index was reduced when the serum was heat inactivated.  相似文献   

17.
This study investigates the physiological responses in the hermatypic coral Galaxea fascicularis exposed to salinity stress (from 37 ppt to 15 ppt) for 12 h, combined effects of reduced salinity (from 37 ppt to 20 ppt) and two temperatures (26 °C and 32 °C) for 12 h and combined effects of reduced salinity (from 37 ppt to 25 ppt) and two temperatures (26 °C and 29.5 °C) for 10 d. The results demonstrate that the coral is tolerant to 12 h exposure to extremely low salinity (15 ppt). The study also shows that combined effects of temperature and low salinity aggravate the damage on the photosynthesis of the symbiotic dinoflagellates in 12 h exposure to 20 ppt sea water. This study suggests that high temperature (29.5 °C) aggravates the damage of trivially low salinity (30 ppt) on the holobiont (the coral and its symbiotic dinoflagellates) in 10 d exposure. However, high temperature (29.5 °C) may have an antagonistic effect between temperature and low salinity (25 ppt) on metabolism of the holobiont. Based on the above results, we suggest that (1) the true mechanism of corals exposed to combined effects of low salinity and high temperature is complicated. This calls for more studies on different corals. Future studies should aim at investigating long-term low-level stress in order to simulate in situ conditions more accurately; (2) when corals exposed to extremely severe combined stressors for short-term or trivially severe stressors for relative long-term, the combined effects of two stressors (such as low salinity and high temperature) may be negative, otherwise, the effects may be additive.  相似文献   

18.
When chlorine is introduced into public drinking water for disinfection, it can react with organic compounds in surface waters to form toxic by-products such as 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX). We investigated the effect of exposure to MX on cytochrome P450 2E1 (CYP2E1)-like activity and total glutathione (GSH) in the liver of the small fish model, medaka (Oryzias latipes). The multi-site carcinogen methylazoxymethanol acetate (MAMAc) was the positive control compound. Both medaka liver microsome preparations and S-9 fractions catalyzed the hydroxylation of p-nitrophenol (PNP), suggesting CYP2E1-like activity in the medaka. Male medaka exposed for 96 h to the CYP2E1 inducers ethanol and acetone under fasted conditions showed significant increases in PNP-hydroxylation activity. Furthermore, total reduced hepatic GSH was reduced in fish fasted for 96 h, indicating that normal feeding is a factor in maintaining xenobiotic defenses. Exposure to MX and MAMAc induced significant increases in hepatic CYP2E1-like activity, however MX exposure did not alter hepatic GSH levels. These data strengthen the role of the medaka as a suitable species for examining cytochrome P450 and GSH detoxification processes and the role these systems play in chemical carcinogenesis.  相似文献   

19.
The effects of chronic exposure to waterborne Cd and elevated dietary Ca, alone and in combination, were examined in juvenile rainbow trout, Oncorhynchusmykiss. Fish were chronically exposed to 0.05 (control) or 2.56 μg/l Cd [as Cd(NO3)2·4H2O] and were fed 2% body mass/day of control (29.6 mg Ca/g) or Ca-supplemented trout food (52.8 mg Ca/g as CaCl2·2H2O). Cd accumulated mainly in gill, liver, and kidney. Waterborne Cd inhibited unidirectional Ca uptake from water into the gill and induced hypocalcemia in the plasma on day 40. Waterborne Cd also induced an elevated Ca concentration on day 20 in the gill tissue of trout fed the Ca-supplemented diet and a decreased Ca concentration on day 35 in the gills of trout fed the control diet. Dietary Ca protected against Cd accumulation in gill, liver, and kidney, but did not protect against the inhibition of Ca uptake into the gill or plasma hypocalcemia. When fed Ca-supplemented diet and exposed to waterborne Cd, fish showed 35% mortality, compared to 0–2% in control fish and in the Cd-exposed fish with normal Ca in the diet. Growth, on the other hand, was not affected by any treatment.  相似文献   

20.
The mass specific rates of oxygen consumption (M (O(2)) M(b)(-1)), ammonia excretion (M (NH(4)-N) M(b)(-1)) and carbon dioxide production (M (CO(2)) M(b)(-1)) were measured after 7, 14 and 21 days exposure of adult Potamonautes warreni to a sublethal concentration of 1.0 mg Cu l(-1) (15.75 micromol l(-1)). Under control (non-copper-exposed) conditions M (O(2)) M(b)(-1) was 35.7+/-8.5 micromol kg(-1)min(-1) (mean+/-S.D.), M (NH(4)-N) M(b)(-1) 2.92+/-0.26 micromol kg(-1)min(-1) and M (CO(2)) M(b)(-1) 25.6+/-9.0 micromol kg(-1)min(-1). The oxygen:nitrogen (O:N) ratio and respiratory quotient (RQ) were 24.5+/-3.0 and 0.80+/-0.06, respectively. M (O(2)) M(b)(-1) of copper-exposed crabs showed a significant increase after 7 and 14 days, but decreased significantly by 40% after 21 days. From the increased O:N ratio and RQ below 0.7, it is clear that crabs exposed to 1 mg Cul(-1) metabolize lipids during the entire 21-day exposure period. Free fatty acids in the midgut gland were determined by GC-MS, and showed increases of up to 600% in some C14 to C18 fatty acids. It is proposed that the excess lipids inhibit the pyruvate dehydrogenase complex, leading to the acceleration of the gluco- and glyco-neogenic pathways. Increased glyconeogenesis results in elevated glycogen concentrations in all tissues after 21 days. Experiments on acutely exposed P. warreni show increased incorporation of 14C-labelled lactate into glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号