首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

3.
During remodeling progress post myocardial infarction, the contribution of neoangiogenesis to the infarct-bed capillary is insufficient to support the greater demands of the hypertrophied but viable myocardium resulting in further ischemic injury to the viable cardiomyocytes at risk. Here we reported the bio-assay-guided identification and isolation of angiogenic tannins (angio-T) from Geum japonicum that induced rapid revascularization of infarcted myocardium and promoted survival potential of the viable cardiomyocytes at risk after myocardial infarction. Our results demonstrated that angio-T displayed potent dual effects on up-regulating expression of angiogenic factors, which would contribute to the early revascularization and protection of the cardiomyocytes against further ischemic injury, and inducing antiapoptotic protein expression, which inhibited apoptotic death of cardiomyocytes in the infarcted hearts and limited infarct size. Echocardiographic studies demonstrated that angio-T-induced therapeutic effects on acute infarcted myocardium were accompanied by significant functional improvement by 2 days after infarction. This improvement was sustained for 14 days. These therapeutic properties of angio-T to induce early reconstitution of a blood supply network, prevent apoptotic death of cardiomyocytes at risk, and improve heart function post infarction appear entirely novel and may provide a new dimension for therapeutic angiogenesis medicine for the treatment of ischemic heart diseases.  相似文献   

4.

Aims

Several studies suggest that circulating bone marrow derived stem cells promote the regeneration of ischemic tissues. For hematopoietic stem cell transplantation combinatorial granulocyte-colony stimulating factor (G-CSF)/Plerixafor (AMD3100) administration was shown to enhance mobilization of bone marrow derived stem cells compared to G-CSF monotherapy. Here we tested the hypothesis whether combinatorial G-CSF/AMD3100 therapy has beneficial effects in cardiac recovery in a mouse model of myocardial infarction.

Methods

We analyzed the effect of single G-CSF (250 µg/kg/day) and combinatorial G-CSF/AMD3100 (100 µg/kg/day) treatment on cardiac morphology, vascularization, and hemodynamics 28 days after permanent ligation of the left anterior descending artery (LAD). G-CSF treatment started directly after induction of myocardial infarction (MI) for 3 consecutive days followed by a single AMD3100 application on day three after MI in the G-CSF/AMD3100 group. Cell mobilization was assessed by flow cytometry of blood samples drawn from tail vein on day 0, 7, and 14.

Results

Peripheral blood analysis 7 days after MI showed enhanced mobilization of white blood cells (WBC) and endothelial progenitor cells (EPC) upon G-CSF and combinatorial G-CSF/AMD3100 treatment. However, single or combinatorial treatment showed no improvement in survival, left ventricular function, and infarction size compared to the saline treated control group 28 days after MI. Furthermore, no differences in histology and vascularization of infarcted hearts could be observed.

Conclusion

Although the implemented treatment regimen caused no adverse effects, our data show that combinatorial G-CSF/AMD therapy does not promote myocardial regeneration after permanent LAD occlusion.  相似文献   

5.
Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.  相似文献   

6.
Patients suffering from heart failure as a result of myocardial infarction are in need of heart transplantation. Unfortunately the number of donor hearts is very low and therefore new therapies are subject of investigation. Cell transplantation therapy upon myocardial infarction is a very promising strategy to replace the dead myocardium with viable cardiomyocytes, smooth muscle cells and endothelial cells, thereby reducing scarring and improving cardiac performance. Despite promising results, resulting in reduced infarct size and improved cardiac function on short term, only a few cells survive the ischemic milieu and are retained in the heart, thereby minimizing long-term effects. Although new capillaries and cardiomyocytes are formed around the infarcted area, only a small percentage of the transplanted cells can be detected months after myocardial infarction. This suggests the stimulation of an endogenous regenerative capacity of the heart upon cell transplantation, resulting from release of growth factor, cytokine and other paracrine molecules by the progenitor cells – the so-called paracrine hypothesis. Here, we focus on a relative new component of paracrine signalling, i.e. exosomes. We are interested in the release and function of exosomes derived from cardiac progenitor cells and studied their effects on the migratory capacity of endothelial cells.  相似文献   

7.
8.
Conventional therapies for myocardial infarction attenuate disease progression without contributing significantly to repair. Because of the capacity for de novo cardiogenesis, embryonic stem cells are considered a potential source for myocardial regeneration, yet limited information is available on their ultimate therapeutic value. We treated infarcted rat hearts with CGR8 embryonic stem cells preexamined for cardiogenicity, serially probed left ventricular function, and determined final pathological outcome. Stem cell delivery generated new cardiomyocytes of embryonic stem cell origin that integrated with host myocardium within infarct regions. This resulted in a functional benefit within 3 wk that remained sustained over 12 wk of continuous follow-up and included a vigorous inotropic response to beta-adrenergic challenge. Integration of stem cell-derived cardiomyocytes was associated with normalized ventricular architecture, little scar, and a decrease in signs of myocardial necrosis. In contrast, sham-treated infarcted hearts exhibited ventricular cavity dilation and aneurysm formation, poor ventricular function, and a lack of response to beta-adrenergic stimulation. No evidence of graft rejection, ectopy, sudden cardiac death, or tumor formation was observed after therapy. These findings indicate that embryonic stem cells, through differentiation within the host myocardium, can contribute to a stable beneficial outcome on contractile function and ventricular remodeling in the infarcted heart.  相似文献   

9.
Bone marrow mesenchymal stem cells (BMSCs) emerge as a promising approach for treating heart diseases. However, the effects of BMSCs‐based therapy on cardiac electrophysiology disorders after myocardial infarction were largely unclear. This study was aimed to investigate whether BMSCs transplantation prevents cardiac arrhythmias and reverses potassium channels remodelling in post‐infarcted hearts. Myocardial infarction was established in male SD rats, and BMSCs were then intramyocardially transplanted into the infarcted hearts after 3 days. Cardiac electrophysiological properties in the border zone were evaluated by western blotting and whole‐cell patch clamp technique after 2 weeks. We found that BMSCs transplantation ameliorated the increased heart weight index and the impaired LV function. The survival of infarcted rats was also improved after BMSCs transplantation. Importantly, electrical stimulation‐induced arrhythmias were less observed in BMSCs‐transplanted infarcted rats compared with rats without BMSCs treatment. Furthermore, BMSCs transplantation effectively inhibited the prolongation of action potential duration and the reduction of transient and sustained outward potassium currents in ventricular myocytes in post‐infarcted rats. Consistently, BMSCs‐transplanted infarcted hearts exhibited the increased expression of KV4.2, KV4.3, KV1.5 and KV2.1 proteins when compared to infarcted hearts. Moreover, intracellular free calcium level, calcineurin and nuclear NFATc3 protein expression were shown to be increased in infarcted hearts, which was inhibited by BMSCs transplantation. Collectively, BMSCs transplantation prevented ventricular arrhythmias by reversing cardiac potassium channels remodelling in post‐infarcted hearts.  相似文献   

10.
Cell-based therapy is considered a novel and potentially new strategy in regenerative medicine. But the efficacy of cell-based therapy has been limited by the poor survival of the transplanted cells in an ischaemic environment. The goal of the present study is to present a possibility to increase survival of the transplanted cardiomyocytes, by increasing the vascularization of the infarcted area. First, we injected endothelial progenitor cells (EPCs) to augment the vascular density in infarcted areas and to improve the benefit of a subsequent Tx of foetal cardiomyocytes. Serial echocardiography indeed showed significant improvement of the left ventricular function after application of EPC and a significant additive improvement after Tx of foetal cardiomyocytes. In contrast, repetitive EPC transplantation as a control group did not show an additional improvement after the second transplantation. Histologically, cells could be readily detected after Tx by BrdU-staining for EPC and by carboxy-fluorescein diacetate succinimidyl ester (CFSE)-staining for foetal cardiomyocytes. Staining for CD31 revealed a significant increase in vessel density in the infarction area compared with medium controls, possibly contributing to the benefit of transplanted foetal cardiomyocytes. Notably, a significant increase in the number of apoptotic cells was observed in cell-transplanted hearts accompanied by an increase in proliferation, collagen content and neutrophil infiltration, suggesting an active remodelling concomitant with sustained inflammatory processes. In conclusion, repetitive Tx of different cell types after myocardial infarction in rat hearts significantly improved left ventricular function and could represent a feasible option to enhance the benefit of cell therapy.  相似文献   

11.
Stromal cell‐derived factor‐1 (SDF‐1) is a well‐characterized cytokine that protects heart from ischaemic injury. However, the beneficial effects of native SDF‐1, in terms of promoting myocardial repair, are limited by its low concentration in the ischaemic myocardium. Annexin V (AnxA5) can precisely detect dead cells in vivo. As massive cardiomyocytes die after MI, we hypothesize that AnxA5 can be used as an anchor to carry SDF‐1 to the ischaemic myocardium. In this study, we constructed a fusion protein consisting of SDF‐1 and AnxA5 domains. The receptor competition assay revealed that SDF‐1‐AnxA5 had high binding affinity to SDF‐1 receptor CXCR4. The treatment of SDF‐1‐AnxA5 could significantly promote phosphorylation of AKT and ERK and induce chemotactic response, angiogenesis and cell survival in vitro. The binding membrane assay and immunofluorescence revealed that AnxA5 domain had the ability to specifically recognize and bind to cells injured by hypoxia. Furthermore, SDF‐1‐AnxA5 administered via peripheral vein could accumulate at the infarcted myocardium in vivo. The treatment with SDF‐1‐AnxA5 attenuated cell apoptosis, enhanced angiogenesis, reduced infarcted size and improved cardiac function after mouse myocardial infarction. Our results suggest that the bifunctional SDF‐1‐AnxA5 can specifically bind to dead cells. The systemic administration of bifunctional SDF‐1‐AnxA5 effectively provides cardioprotection after myocardial infarction.  相似文献   

12.
It has recently been suggested that the infarcted rat heart microenvironment could direct pluripotent mouse embryonic stem cells to differentiate into cardiomyocytes through an in situ paracrine action. To investigate whether the heart can function as a cardiogenic niche and confer an immune privilege to embryonic stem cells, we assessed the cardiac differentiation potential of undifferentiated mouse embryonic stem cells (mESC) injected into normal, acutely or chronically infarcted rat hearts. We found that mESC survival depended on immunosuppression both in normal and infarcted hearts. However, upon Cyclosporin A treatment, both normal and infarcted rat hearts failed to induce selective cardiac differentiation of implanted mESC. Instead, teratomas developed in normal and infarcted rat hearts 1 week and 4 weeks (50% and 100%, respectively) after cell injection. Tight control of ESC commitment into a specific cardiac lineage is mandatory to avoid the risk of uncontrolled growth and tumourigenesis following transplantation of highly plastic cells into a diseased myocardium.  相似文献   

13.
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.  相似文献   

14.
It is well known that the implantation of bone marrow mononuclear cells (BM-MNCs) into ischemic hearts can induce angiogenesis and improve cardiac function after myocardial infarction, but the precise mechanisms of these actions are unclear. We hypothesize that the cytokines produced by BM-MNCs play a key role in this cell-based therapy. BM-MNCs from rats were cultured under normoxic or hypoxic (1% O2) conditions for 24 h, and then supernatants were collected for study. ELISA and Western blotting analysis showed that various cytokines, including VEGF, IL-1 beta, PDGF, and IGF-1, were produced from BM-MNCs, some of which were enhanced significantly under hypoxia stimulation. When compared with a control blank medium, the supernatants of BM-MNCs cultured under normoxic or hypoxic conditions inhibited apoptosis significantly and preserved the contractile capacity of isolated adult rat cardiomyocytes in vitro (P < 0.05). Using a rat model of acute myocardial infarction, we injected the supernatants of BM-MNCs or control medium intramyocardially on day 0 and then intraperitoneally on days 2, 4, and 6 after infarction. When compared with the control medium, the supernatants of BM-MNCs cultured under both normoxic or hypoxic conditions increased the microvessel density and decreased the fibrotic area in the infarcted myocardium significantly, contributing to remarkable improvement in cardiac function. Various cytokines were produced by BM-MNCs, and these cytokines contributed to functional improvement of the infarcted heart by directly preserving the contractile capacity of the myocardium, inhibiting apoptosis of cardiomyocytes, and inducing therapeutic angiogenesis of the infarcted heart.  相似文献   

15.
Zeng H  Li L  Chen JX 《PloS one》2012,7(4):e35905
Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts.  相似文献   

16.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   

17.
18.
We previously showed that human cardiomyocyte progenitor cells (hCMPCs) injected after myocardial infarction (MI) had differentiated into cardiomyocytes in vivo 3 months after MI. Here, we investigated the short-term (2 weeks) effects of hCMPCs on the infarcted mouse myocardium. MI was induced in immunocompromised (NOD/scid) mice, immediately followed by intramyocardial injection of hCMPCs labelled with enhanced green fluorescent protein (hCMPC group) or vehicle only (control group). Sham-operated mice served as reference. Cardiac performance was measured 2 and 14 days after MI by magnetic resonance imaging at 9.4 T. Left ventricular (LV) pressure-volume measurements were performed at day 15 followed by extensive immunohistological analysis. Animals injected with hCMPCs demonstrated a higher LV ejection fraction, lower LV end-systolic volume and smaller relaxation time constant than control animals 14 days after MI. hCMPCs engrafted in the infarcted myocardium, did not differentiate into cardiomyocytes, but increased vascular density and proliferation rate in the infarcted and border zone area of the hCMPC group. Injected hCMPCs engraft into murine infarcted myocardium where they improve LV systolic function and attenuate the ventricular remodelling process 2 weeks after MI. Since no cardiac differentiation of hCMPCs was evident after 2 weeks, the observed beneficial effects were most likely mediated by paracrine factors, targeting amongst others vascular homeostasis. These results demonstrate that hCMPCs can be applied to repair infarcted myocardium without the need to undergo differentiation into cardiomyocytes.  相似文献   

19.
The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT‐ES]) cells to treat diseases. Nevertheless, it is controversial as NT‐ES cells may pose risks in their therapeutic application. EHT from NT‐ES cell‐derived cardiomyocytes was generated through a series of improved techniques in a self‐made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2–4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT‐ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT‐ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.  相似文献   

20.
Although amlodipine, a long-acting L-type calcium channel blocker, reportedly prevents left ventricular remodeling and dysfunction after myocardial infarction, the mechanism responsible is not yet well understood. Myocardial infarction was induced in mice by ligating the left coronary artery. Treatment of mice with amlodipine (10 mg x kg(-1) x day(-1)), beginning on the third day postinfarction, significantly improved survival and attenuated left ventricular dilatation and dysfunction 4 wk postinfarction compared with treatment with saline or hydralazine. Although infarct sizes did not differ among the groups, the infarcted wall thickness was greater and the infarct segment length was smaller in the amlodipine-treated group, and cellular components, including vessels and myofibroblasts, were abundant within the infarcted area. Ten days postinfarction (the subacute stage), the proliferation of granulation tissue cells in the infarcted area was similar among the groups, but the incidence of apoptosis was significantly lower in the amlodipine-treated group, where Bad, a proapoptotic Bcl-2 family protein, was significantly phosphorylated (inactivated). Calcineurin, which dephosphorylates (activates) Bad, was upregulated in infarcted hearts, but its levels were significantly reduced by amlodipine treatment. In vitro, Fas stimulation augmented calcineurin activity and induced apoptosis among infarct tissue-derived myofibroblasts; both of those effects were strongly inhibited by amlodipine, two other calcium channel blockers (verapamil or nifedipine), and two calcineurin inhibitors (cyclosporin A or FK-506). Amlodipine inhibits Fas-mediated granulation tissue cell apoptosis in infarcted hearts, possibly by attenuating the activities of calcineurin and Bad. These findings may provide new insight into the mechanism by which calcium channel blockers attenuate postinfarction cardiac remodeling and dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号