首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Liver, a central organ responsible for the metabolism of carbohydrates, proteins, and lipoproteins, is exposed to various kinds of physiological, pathological, and environmental stresses. We hypothesized that blockage of proteasome degradation pathway induces heat shock protein (HSP) response and unfolded protein response in the liver cells. In this study, we have characterized cellular responses to proteasome inhibition in HepG2 cells, a well-differentiated human hepatoma cells. We found that proteasome inhibition induced differential response among cytosolic HSPs, that is, increased expression of HSP70, but no change in HSP40, HSC70, and HSP90. However, proteasome inhibition did not induce typical unfolded protein response as indicated by absence of stimulation of GRP78 and GRP94 proteins. Upon proteasome inhibition, inclusion bodies were accumulated, and ubiquitin-conjugated proteins appeared in insoluble fraction, together with HSP40, HSP70, HSC70, and HSP90. After proteasome inhibition, misfolded proteins were increased in the cytosol and in the ER compartment as evaluated by examining ubiquitin-conjugated proteins. However, essentially all ER-associated ubiquitin-conjugated proteins were located on the surface of the ER, which explains why proteasome inhibition does not induce unfolded protein response. In conclusion, proteasome inhibition induces differential HSP response, but not unfolded protein response in HepG2 cells. Our study also suggests that HSPs play important roles in directing proteasomal degradation and protein aggregate formation.  相似文献   

3.
4.
Oxidative stress caused by glutathione depletion after prolonged exposure to extracellular glutamate leads to a form of neuronal cell death that exhibits morphologically mixed features of both apoptosis and necrosis. However, specific downstream executioners involved in this form of cell death have yet to be identified. We report here that glutamate exposure does not activate caspase-3 in the HT22 neuronal cell line. Furthermore, no cytoprotection was achieved with either the pan-caspase inhibitor Z-VAD-fmk or the caspase-3-specific inhibitor DEVD-CHO. In contrast, inhibition of the proteasome by lactacystin protected both HT22 cells and rat primary neuronal cells against cell lysis. In parallel, oxidatively altered and ubiquitinated proteins accumulated in the mitochondrial fraction of cells after proteasome inhibition. These findings suggest that caspases can be decoupled from oxidative stress under some conditions, and implicate the ubiquitin/proteasome pathway in neuronal cell death caused by oxidative glutamate toxicity.  相似文献   

5.
The complete inhibition of proteasome activities interferes with the production of most MHC class I peptide ligands as well as with cellular proliferation and survival. In this study we have investigated how partial and selective inhibition of the chymotrypsin-like activity of the proteasome by the proteasome inhibitors lactacystin or epoxomicin would affect Ag presentation. At 0.5-1 microM lactacystin, the presentation of the lymphocytic choriomeningitis virus-derived epitopes NP118 and GP33 and the mouse CMV epitope pp89-168 were reduced and were further diminished in a dose-dependent manner with increasing concentrations. Presentation of the lymphocytic choriomeningitis virus-derived epitope GP276, in contrast, was markedly enhanced at low, but abrogated at higher, concentrations of either lactacystin or epoxomicin. The inhibitor-mediated effects were thus epitope specific and did not correlate with the degradation rates of the involved viral proteins. Although neither apoptosis induction nor interference with cellular proliferation was observed at 0.5-1 microM lactacystin in vivo, this concentration was sufficient to alter the fragmentation of polypeptides by the 20S proteasome in vitro. Our results indicate that partial and selective inhibition of proteasome activity in vivo is a valid approach to modulate Ag presentation, with potential applications for the treatment of autoimmune diseases and the prevention of transplant rejection.  相似文献   

6.
The inhibition of DNA damage response pathway seems to be an attractive strategy for cancer therapy. It was previously reported that in rodent cells exposed to heat stress, cell growth was promoted by the activity of DNA-dependent protein kinase (DNA-PK), an enzyme involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair. The absence of a functioning DNA-PK was associated with down regulation of heat shock protein 70 (HSP70). The objective of this study is thus to investigate the role of DNA-PK inhibition in heat-induced apoptosis in human cell lines. The inhibitors of phosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) at Ser2056, such as NU7026 and NU7441, were utilized. Furthermore, knock down of DNA-PKcs was carried out using small interfering RNA (siDNA-PKcs). For heat exposure, cells were placed in water bath at 44°C for 60 min. Apoptosis was evaluated after 24 h incubation flow cytometrically. Proteins were extracted after 24 h and analyzed for HSP70 and HSP40 expression by Western blotting. Total RNA was extracted 6 h after treatment and analyzed using a GeneChip® microarray system to identify and select the up-regulated genes (≥1.5 fold). The results showed an enhancement in heat-induced apoptosis in absence of functioning DNA-PKcs. Interestingly, the expression levels of HSP70 and HSP40 were elevated in the absence of DNA-PKcs under heat stress. The results of genetic network analysis showed that HSPs and JUN genes were up-regulated independently of DNA-PKcs in exposed parent and knock out cells. In the presence of functioning DNA-PKcs, there was an observed up-regulation of anti-apoptotic genes, such as NR1D1, whereas in the absence of DNA-PKcs the pro-apoptotic genes, such as EGR2, were preferentially up-regulated. From these findings, we concluded that in human cells, the inactivation of DNA-PKcs can promote heat-induced apoptosis independently of heat-shock proteins.  相似文献   

7.
Heat shock proteins: endogenous modulators of apoptotic cell death   总被引:36,自引:0,他引:36  
The highly conserved heat shock proteins (HSPs) accumulate in cells exposed to heat and a variety of other stressful stimuli. HSPs, which function mainly as molecular chaperones, allow cells to adapt to gradual changes in their environment and to survive in otherwise lethal conditions. The events of cell stress and cell death are linked and HSPs induced in response to stress appear to function at key regulatory points in the control of apoptosis. HSPs include antiapoptotic and proapoptotic proteins that interact with a variety of cellular proteins. Their expression level can determine the fate of the cell in response to a death stimulus, and apoptosis-inhibitory HSPs, in particular HSP27 and HSP70, may participate in carcinogenesis. This review summarizes apoptosis-regulatory function of HSPs.  相似文献   

8.
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl – dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14–associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor – bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.  相似文献   

9.
《朊病毒》2013,7(1):53-60
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.  相似文献   

10.
Heat shock proteins HSP27, HSP70 and HSP90 are molecular chaperones whose expression is increased after many different types of stress. They have a protective function helping the cell to cope with lethal conditions. The cytoprotective function of HSPs is largely explained by their anti-apoptotic function. HSPs have been shown to interact with different key apoptotic proteins. As a result, HSPs can block essentially all apoptotic pathways, most of them involving the activation of cystein proteases called caspases. Apoptosis and differentiation are physiological processes that share many common features, for instance, chromatin condensation and the activation of caspases are frequently observed. It is, therefore, not surprising that many recent reports imply HSPs in the differentiation process. This review will comment on the role of HSP90, HSP70 and HSP27 in apoptosis and cell differentiation. HSPs may determine de fate of the cells by orchestrating the decision of apoptosis versus differentiation.Key Words: apoptosis, differentiation, heat shock proteins, chaperones, cancer cells, anticancer drugs  相似文献   

11.
12.
Farnesyl transferase inhibitors (FTIs) are novel antitumor drugs with clinical activity. FTIs inhibit cell growth not only by preventing direct Ras farnesylation but also through a Ras-independent pathway. Proteomics has been shown to be a powerful tool to monitor and analyze molecular networks and fluxes within the living cells and to identify the proteins that participate in these networks upon perturbation of the cellular environment. To observe early and dynamic protein changes in the cellular response to FTI in ovarian cancer cells, total proteins were extracted from 2774 cells treated or not with 10 microM manumycin, an FTI, for 3, 6 and 16 h. The proteins in the cells that were differentially expressed following treatment with manumycin for 3, 6 and 16 h were noted by two-dimensional electrophoresis and further identified by peptide mass fingerprinting as stress proteins. Both heat shock protein 70 (HSP70) and altered HSP70 were significantly up-regulated as early as 16 h in 2774 cells after exposure to manumycin. Since HSP70 plays an important role in protecting cells under stress, we treated the 2774 cells with the HSP inhibitor quercetin in combination with FTI. Quercetin dramatically enhanced the manumycin-mediated apoptosis in 2774 cells. Inducible HSP70 by manumycin in surviving ovarian cancer cells was also inhibited by quercetin as demonstrated by enzyme-linked immunosorbent assay. The inhibition of HSP70 by quercetin was correlated with enhancement of manumycin-induced mediated apoptosis in 2774 cells. The inhibition of HSP70 by 50 microM quercetin was also correlated with a decreased expression of procaspase-3 and enhancement of specific cleavage of poly (ADP-ribose) polymerase into apoptotic fragment in 2774 cells treated with manumycin. The interaction between the HSP70 inhibitor and FTI confirms the functional significance of the up-regulation of HSP70 as a protective mechanism against FTI-induced apoptosis and provides the framework for combination treatment of ovarian cancer.  相似文献   

13.
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase‐1 (HO‐1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO‐1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO‐1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO‐1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.  相似文献   

14.
The ubiquitin-proteasome pathway plays a critical role in the degradation of several proteins involved in the cell cycle. Dysregulation of this pathway leads to inhibition of cellular proliferation and the induction of apoptosis. Ubiquitination and its downstream consequences have been investigated intensively as targets for the development of drugs for tumour therapy. Here we have investigated the mechanism of apoptosis induced by the proteasome inhibitors MG-132, lactacystin and calpain inhibitor I (ALLN), in the HEK 293 cell line and the ovarian cancer cell lines SKOV3 and OVCAR3. We have found strong caspase-3-like and caspase-6-like activation upon treatment of HEK 293 cells with MG-132. Using a tricistronic expression vector based on a tetracycline-responsive system we generated stable SKOV3 nd OVCAR3 cell lines with inducible expression of pro-caspase-3. Induction of pro-caspase-3 expression in normally growing cells does not induce apoptosis. However, in the presence of the proteasome inhibitors MG-132, lactacystin or ALLN we found that cells overexpressing pro-caspase-3 are rapidly targeted for apoptosis. Our results demonstrate that pro-caspase-3 can sensitise ovarian cancer cells to proteasome inhibitor-induced apoptosis, and a combination of these approaches might be exploited for therapy of ovarian and other cancers.  相似文献   

15.
16.
Proteome analysis of human umbilical endothelial cells was performed to identify proteins that are modified during vascular endothelial cell growth factor (VEGF)-induced transition from the quiescent into the proliferating-migrative phenotype. Subtractive analysis of two-dimensional gel patterns of human endothelial cells, before and after stimulation with VEGF(165), revealed differences in 85 protein spots. All proteins were identified by peptide sequencing and peptide mass fingerprinting using an electrospray spectrometer. The proteins identified were members of specific families including Ca(2+)-binding proteins, fatty-acid binding proteins, structural proteins, and chaperones. Remarkably, there was a massive activation of cellular machinery for both protein synthesis and protein degradation. Thus, among up-regulated proteins there were members of all groups of heat shock proteins (HSPs; HSP 27, HSP 60, HSP 70p5, HSP 70p8, HSP 90, and HSP 96) and some other proteins showing either chaperone activity or which participate in assembly of multimolecular structures (TCP-1, desmoplakins, junction plakoglobin, GRP 94, thioredoxin related protein, and peptidylprolyl isomerase). The increased expression of HSPs was confirmed at the mRNA level at different stages of treatment with VEGF. Similarly, components of the proteolytic machinery for the degradation of misfolded proteins (ER-60, cathepsin D, proteasome subunits, and protease inhibitor 6) were also up-regulated. On the other hand, changes in the expression of structural proteins (T-plastin, vimentin, alpha tubulin, actin, and myosin) could account, at least in part, for the different morphologies displayed by migrating endothelial cells. In summary, our data show that VEGF levels similar to those during physiological stresses induce a number of genes and multiple endogenous pathways seem to be engaged in restoring cellular homeostasis. To ensure cell survival, the molecular chaperones (the heat shock family of stress proteins) are highly up-regulated providing protein-folding machinery to repair or degrade misfolded proteins.  相似文献   

17.
At least nine neurodegenerative disorders are caused by expansion of polyglutamine repeats in various genes. This expansion induces the formation of nuclear inclusions (NI) within various cell types. In this study, we developed a model for polyglutamine diseases using primary cultures of sympathetic neurons from the superior cervical ganglia of prenatal rat pups. Transfection with a plasmid encoding 127 glutamine repeats causes NI to develop in approximately 70% of the sympathetic neurons within 6 days. In addition, it causes somatic atrophy and inhibits dendritic growth. The NIs contain ubiquitinated proteins and sequester the molecular chaperone heat shock protein 70 (Hsp70). We found that two specific proteasome inhibitors, lactacystin and CEP1612, suppress thezformation of polyglutamine-induced NI. In addition, lactacystin treatment induced the removal of preexisting NI. Western blotting and immunocytochemistry revealed that lactacystin and CEP1612 strongly induce the expression of Hsp70, whereas less specific proteasome inhibitor such as N-acetyl-Leu-Leu-Norleucinal does not. Coexpression of 127 glutamines with a plasmid encoding wild-type Hsp70 gene resulted in a marked reduction of the percentage of neurons containing NI. In addition, transfection with plasmids encoding mutant Hsp70 blocked the effects of lactacystin. These findings further implicate Hsp70 as a neuroprotective molecule and they suggest the potential utility of certain proteasome inhibitors in the treatment of polyglutamine diseases.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号