首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The transposon Mutator was first identified in maize, and is one of the most active mobile elements in plants. The Arabidopsis thaliana genome contains at least 200 Mutator-like elements (MULEs), which contain the Mutator-like transposase gene, and often additional genes. We have detected a novel type of MULEs in melon (CUMULE), which, besides the transposase, contains two ubiquitin-like specific protease-like sequences (ULP1). This element is not present in the observed location in some melon cultivars. Multiple copies of this element exist in the Cucumis melo genome, and it has been detected in other Cucurbitaceae species. Analysis of the A. thaliana genome revealed more than 90 CUMULE-like elements, containing one or two Ulp1-like sequences, although no evidence of mobility exists for these elements. We detected various putative transposable elements containing ULP1-like sequences in rice. The discovery of these MULEs in melon and Arabidopsis, and the existence of similar elements in rice and maize, suggest that a proteolytic function may be important for this subset of the MULE transposable elements. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Nucleotide sequence data reported are available in the GenBank database under the accession number AY524004.  相似文献   

2.
3.
Characterization of the rice (Oryza sativa) actin gene family   总被引:11,自引:0,他引:11  
  相似文献   

4.
Survey of transposable elements from rice genomic sequences   总被引:27,自引:0,他引:27  
Oryza sativa L. (domesticated rice) is a monocotyledonous plant, and its 430 Mb genome has been targeted for complete sequencing. We performed a high-resolution computer-based survey for transposable elements on 910 Kb of rice genomic DNA sequences. Both class I and II transposable elements were present, contributing 19.9% of the sequences surveyed. Class II elements greatly outnumbered class I elements (166 versus 22), although class I elements made up a greater percentage (12.2% versus 6.6%) of nucleotides surveyed. Several Mutator-like elements (MULEs) were identified, including rice elements that harbor truncated host cellular genes. MITEs (miniature inverted-repeat transposable elements) account for 71.6% of the mined transposable elements and are clearly the predominant type of transposable element in the sequences examined. Moreover, a putative Stowaway transposase has been identified based on shared sequence similarity with the mined MITEs and previously identified plant mariner-like elements (MLEs). Members of a group of novel rice elements resembling the structurally unusual members of the Basho family in Arabidopsis suggest a wide distribution of these transposons among plants. Our survey provides a preview of transposable element diversity and abundance in rice, and allows for comparison with genomes of other plant species.  相似文献   

5.
张亮生  马成荣  戢茜  王翼飞 《遗传》2009,31(2):186-198
ET(Su(var), Enhancer of zeste (E(z)), and Trithorax)结构域基因家族是一组含有保守SET结构域的蛋白的统称, 它们参与蛋白甲基化, 影响染色体结构, 并且调控基因表达, 在植物发育中起着重要的作用。分析拟南芥和水稻中SET结构域基因家族进化关系, 对研究这一基因家族中各成员的功能有着重要的意义。我们系统地鉴定了47个拟南芥(Arabidopsis thaliana)和43个水稻(Orysa sativa japonica cultivar Nipponbare)的SET结构域基因, 染色体定位和基因复制分析表明SET结构域基因扩增是由片段复制和反转录引起的, 根据这些结构域差异和系统发育分析把拟南芥和水稻的SET结构域基因划分成5个亚家族。通过分析SET结构域基因家族在拟南芥和水稻各个发育阶段的表达谱, 发现SET结构域基因绝大部分至少在一个组织中表达; 大部分在花和花粉中高表达; 一些SET结构域基因在某些组织中有特异的表达模式, 表明与组织发育有密切的关系。在拟南芥和水稻中分别找到了4个差异表达基因。拟南芥4个差异基因都在花粉管高表达, 水稻4个差异基因有3个在雄性花蕊中高表达, 另一个在幼穗中高表达。  相似文献   

6.
7.
8.
Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23 000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis . This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.  相似文献   

9.
汤静思  杨明耀  李英 《遗传》2015,37(1):8-16
假基因是一段具有与功能基因相似的DNA序列,但由于存在许多突变以致失去了原有的功能。过去的研究认为假基因是没有功能的DNA片段,是基因组进化过程中产生的噪音。然而,随着分子生物学技术的发展,越来越多的研究证明了假基因具有重要的生物学功能。假基因可与功能基因竞争性结合miRNA,从而调控功能基因的表达;假基因还可产生内源性小干扰RNA抑制功能基因的表达;甚至有的假基因还可以编码具有功能的蛋白质。文章通过假基因的分类、假基因的识别、假基因的功能和假基因与癌症疾病的关系等方面综述了假基因研究的最新进展。  相似文献   

10.
基因芯片与植物基因差异表达分析   总被引:5,自引:0,他引:5  
李同祥  王进科 《植物研究》2002,22(3):310-313
基因芯片为研究植物不同个体或物种之间以及同一个体在不同生长发育阶段、正常和疾病状态下基因表达的差异、某一性状多基因的协同作用,寻找和定位新的目的基因等方面带来了革命性的变革。与传统研究基因差异表达的方法相比,它具有微型化、用材少、快速、准确、灵敏度能高基、在因同等一研究方面已取得了显著的成绩,如拟南芥、酵母、水稻等。  相似文献   

11.
Mutator-like transposable elements (MULEs) are widespread in plants and were first discovered in maize where there are a total of 12,900 MULEs. In comparison, rice, with a much smaller genome, harbors over 30,000 MULEs. Since maize and rice are close relatives, the differential amplification of MULEs raised an inquiry into the underlying mechanism. We hypothesize this is partly attributed to the differential copy number of autonomous MULEs with the potential to generate the transposase that is required for transposition. To this end, we mined the two genomes and detected 530 and 476 MULEs containing transposase sequences (candidate coding-MULEs) in maize and rice, respectively. Over 1/3 of the candidate coding-MULEs harbor nested insertions and the ratios are similar in the two genomes. Among the maize elements with nested insertions, 24% have insertions in coding regions and over half of them harbor two or more insertions. In contrast, only 12% of the rice elements have insertions in coding regions and 19% have multiple insertions, suggesting that nested insertions in maize are more disruptive. This is because most nested insertions in maize are from LTR retrotransposons, which are large in size and are prevalent in the maize genome. Our results suggest that the amplification of retrotransposons may limit the amplification of DNA transposons but not vice versa. In addition, more indels are detected among maize elements than rice elements whereas defects caused by point mutations are comparable between the two species. Taken together, more disruptive nested insertions combined with higher frequency of indels resulted in few (6%) coding-MULEs that may encode functional transposases in maize. In contrast, 35% of the coding-MULEs in rice retain putative intact transposase. This is in addition to the higher expression frequency of rice coding-MULEs, which may explain the higher occurrence of MULEs in rice than that in maize.  相似文献   

12.
13.
14.
15.
16.
In a screen for MADS box genes which activate and/or repress flowering in rice, we identified a gene encoding a MADS domain protein (OsSOC1) related to the Arabidopsis gene AtSOC1. AtSOC1 and OsSOC1 show a 97% amino acid similarity in their MADS domain. The rice gene contains a large first intron of 27.6 kb compared to the 1 kb intron in Arabidopsis. OsSOC1 is located on top of the short arm of chromosome 3, tightly linked to the heading date locus, Hd9. OsSOC1 is expressed in vegetative tissues, and expression is elevated at the time of floral initiation, 40-50 days after sowing, and remains uniformly high thereafter, similar to the expression pattern of AtSOC1. The constitutive expression of OsSOC1 in Arabidopsis results in early flowering, suggesting that the rice gene is a functional equivalent of AtSOC1. We were not able to identify FLC-like sequences in the rice genome; however, we show that ectopic expression of the Arabidopsis FLC delays flowering in rice, and the up-regulation of OsSOC1 at the onset of flowering initiation is delayed in the AtFLC transgenic lines. The reciprocal recognition and flowering time effects of genes introduced into either Arabidopsis or rice suggest that some components of the flowering pathways may be shared. This points to a potential application in the manipulation of flowering time in cereals using well characterized Arabidopsis genes.  相似文献   

17.
18.
The cereal caryopsis is a complex tissue in which maternal and endosperm tissues follow distinct but coordinated developmental programs. Because of the hexaploid genome in wheat (Triticum aestivum), the identification of genes involved in key developmental processes by genetic approaches has been difficult. To bypass this limitation, we surveyed 888 genes that are expressed during caryopsis development using a novel high-throughput mRNA in situ hybridization method. This survey revealed novel distinct spatial expression patterns that either reflected the ontogeny of the developing caryopsis or indicated specialized cellular functions. We have identified both known and novel genes whose expression is cell cycle-dependent. We have identified the crease region as important in setting up the developmental patterning, because the transition from proliferation to differentiation spreads from this region to the rest of the endosperm. A comparison of this set of genes with the rice (Oryza sativa) genome shows that approximately two-thirds have rice counterparts but also suggests considerable divergence with regard to proteins involved in grain filling. We found that the wheat genes had significant homology with 350 Arabidopsis thaliana genes. At least 25 of these are already known to be essential for seed development in Arabidopsis, but many others remain to be characterized.  相似文献   

19.
New insights into the biology of cytokinin degradation   总被引:9,自引:0,他引:9  
A survey of recent results is presented concerning the role of cytokinin degradation in plants, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. An overview of Arabidopsis CKX gene expression suggests that their differential regulation by biotic and abiotic factors contributes significantly to functional specification. Here, we show using reporter gene and semiquantitative RT-PCR analyses regulation of individual CKX genes by cytokinin, auxin, ABA, and phosphate starvation. Partially overlapping expression domains of CKX genes and cytokinin-synthesizing IPT genes in meristematic tissues and endo-reduplicating cells lend support for a locally restricted function of cytokinin. On the other hand, their expression in vascular tissue suggests a function in controlling transported cytokinin. Recent studies led to a model for the biochemical reaction mechanism of CKX-mediated catalysis, which was refined on the basis of the three-dimensional enzyme structure. Last but not least, the developmental functions of CKX enzymes are addressed. The recent identification of the rice OSCKX2 gene as an important novel breeding tool is highlighted. Together the results corroborate the relevance of metabolic control in determining cytokinin activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号