首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the mechanism of trophoblast adhesion to fibronectin, we cultured blastocysts in serum-free medium on proteolytic fibronectin fragments containing its major functional domains, and localized fibronectin-binding integrins in outgrowing trophoblast cells by immunofluorescent staining. Outgrowth comparable to that obtained with intact fibronectin was observed using a 120 kD chymotryptic fragment containing the central cell-binding domain (FN-120) and the Arg-Gly-Asp (RGD) recognition sequence. A 40 kD COOH-terminal chymotryptic fragment of fibronectin containing both a heparin-binding region and an alternate (non-RGD) cell-binding site was inactive in supporting trophoblast adhesion. Three synthetic peptides derived from the heparin-binding domain, including the CS1 alternate cell-binding site, were also unable to promote trophoblast cell adhesion. A 75 kD recombinant protein, ProNectin F, containing 13 copies of the cell recognition epitope of fibronectin, Val-Thr-Gly-Arg-Gly-Asp-Ser-Pro-Ala-Ser, vigorously supported blastocyst outgrowth. Blastocyst outgrowth was not significantly different when surfaces were precoated with cellular fibronectin, which contains an alternatively spliced type III repeat and is the form actually encountered in vivo. Several putative fibronectin receptors were localized in trophoblast outgrowths by immunofluorescent labeling. Antibodies reactive with integrin subunits α3, α5, αllb, αv, β1 and β3, but not α4, all bound to trophoblast cells. Antibodies raised against either the β1 or β3 integrin subunits significantly inhibited fibronectin-mediated outgrowth. These findings demonstrate the key role of the central cell-binding domain of fibronectin in trophoblast adhesion, and suggest four RGD-binding integrins, α3β1, α5β1, αllbβ3, and αvβ3, that could mediate trophoblast adhesion in vitro and may play an important role during implantation. © 1995 Wiley-Liss, Inc.  相似文献   

2.
We have examined the expression, localization, and function of beta 1 integrins on cultured human epidermal keratinocytes using polyclonal and monoclonal antibodies against the beta 1, alpha 2, alpha 3, and alpha 5 integrin subunits. The beta 1 polypeptide, common to all class 1 integrins, was localized primarily in areas of cell-cell contacts of cultured keratinocytes, as were alpha 2 and alpha 3 polypeptides, suggesting a possible role in cell-cell adhesion for these integrin polypeptides. In contrast, the fibronectin receptor alpha 5 subunit showed no such accumulations in regions of cell-cell contact but was more diffusely distributed in the keratinocyte plasma membrane, consistent with the absence of fibronectin at cell-cell contact sites. Colonies of cultured keratinocytes could be dissociated by treatment with monoclonal antibody specific to the beta 1 polypeptide. Such dissociation of cell-cell contacts also occurred under conditions where the monoclonal antibody had no effect on cell-substrate adhesion. Therefore, beta 1 integrin-dependent cell-cell adhesion can be inhibited without affecting other cell-adhesive interactions. Antibody treatment of keratinocytes maintained in either low (0.15 mM) or high (1.2 mM) CaCl2 also resulted in the loss of organization of intracellular F-actin filaments and beta 1 integrins, even when the anti-beta 1 monoclonal antibody had no dissociating effect on keratinocyte colonies at the higher calcium concentration. Our results indicate that beta 1 integrins play roles in the maintenance of cell-cell contacts between keratinocytes and in the organization of intracellular microfilaments. They suggest that in epithelial cells integrins can function in cell-cell interactions as well as in cell-substrate adhesion.  相似文献   

3.
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.  相似文献   

4.
Porphyromonas gingivalis is a predominant periodontal pathogen, whose fimbriae are considered to be a major virulence factor, especially for bacterial adherence and invasion of host cells. In the present study, we investigated the influence of fimbriae on the interactions between alphavbeta3- and alpha5beta1-integrins and their ligand extracellular matrix (ECM) proteins (vitronectin and fibronectin), using human alphavbeta3- and alpha5beta1-integrin-overexpressing CHO cell lines (CHOalphavbeta3 and CHOalpha5beta1, respectively). P. gingivalis was found to have significantly greater binding to CHOalphavbeta3 and CHOalpha5beta1 than to control cells, whereas a fimbria-deficient mutant showed negligible binding to any of the tested cell lines. CHOalphavbeta3 and CHOalpha5beta1 cells attached to the polystyrene culture dishes in the presence of their ligand ECM proteins, while fimbriae markedly inhibited those attachments in a dose-dependent manner, with the highest dose of fimbriae achieving complete inhibition. In addition, the binding of vitronectin and fibronectin to CHOalphavbeta3 and CHOalpha5beta1 was inhibited by P. gingivalis cells. These results suggest that P. gingivalis fimbriae compete with ECM proteins for alphavbeta3- and alpha5beta1-integrins, and inhibit integrin/ECM protein-related cellular functions.  相似文献   

5.
Cells are capable of adhering to and migrating on protein components of the extracellular matrix. These cell-matrix interactions are thought to be mediated largely through a family of cell surface receptors termed integrins. However, the manner in which individual integrins are involved in cell adhesion and motility has not been fully determined. To explore this issue, we previously selected a series of CHO variants that are deficient in expression of the integrin alpha 5 beta 1, the "classical" fibronectin receptor. Two sets of subclones of these variants were defined which respectively express approximately 20% or 2% of fibronectin receptor on the cell surface when compared to wild-type cells (Schreiner, C. L., J. S. Bauer, Y. N. Danilov, S. Hussein, M. M. Sczekan, and R. L. Juliano. 1989. J. Cell Biol. 109:3157-3167). In the current study, the variant clones were tested for haptotactic motility on substrata coated with fibronectin or vitronectin. Data from assays using fibronectin show that cellular motility of the 20% variants was substantially decreased (30-75% of wild type), while the motility of the 2% variants was nearly abolished (2-20% of wild type). Surprisingly, a similar pattern was seen for haptotactic motility of both 2% and 20% variants when vitronectin was used (approximately 20-30% of wild type). The reduced haptotactic motility of the fibronectin receptor-deficient variant clones on vitronectin was shown not to be due to reduced vitronectin receptor (alpha v beta 3) expression nor to a failure of these variants to adhere to vitronectin substrata. Transfection of the deficient variants with a cDNA for the human alpha 5 subunit resulted in normal levels of fibronectin receptor expression (as a human alpha 5/hamster beta 1 chimera) and restored the motility of the CHO variants on fibronectin and vitronectin. This indicates that expression of the alpha 5 subunit is required for normal haptotactic motility on vitronectin substrata and suggests that the fibronectin receptor (alpha 5 beta 1) plays a cooperative role with vitronectin receptors in cell motility.  相似文献   

6.
7.
Interactions of Opc-expressing Neisseria meningitidis with polarized and non-polarized human umbilical vein endothelial cells (Huvecs) were investigated. Metabolic inhibitors and cytochalasin D treatment showed that host cellular and cytoskeletal functions were important for Opc-expressing bacterial association with Huvecs at the apical surface. In addition, this interaction required the presence of serum in the incubation medium whilst association with nonpolarized cells did not require serum. Pre-exposure of Opc-expressing bacteria to serum was sufficient to increase the number of bacterial interactions at the apical surface; B306, a monoclonal antibody (mAb) against Opc, inhibited these interactions, suggesting that Ope binds to serum factor(s) and this in turn increases adherence to Huvecs. The receptors involved in this ‘sandwich’ adherence belong to the integrin family since the interaction was inhibited by peptides containing the amino acid sequence arginine-glycine-aspartic acid (RGD) and the tetrapeptide RGDS (but not the peptide RGES) was inhibitory. Non-polarized cells appeared to expose receptors/sites that bound to Opc-expressing bacteria directly, did not require serum factors and were not inhibited by RGD-containing peptides. Serum-dependent interactions of Opc-expressing bacteria to apical surface was inhibited significantly by severai mAbs against avβ3 integrins. Some mAbs against α5 and β1 caused partial inhibition; antibodies that did not block the function of β1 integrins or the mAbs against α2 integrins were not inhibitory to bacterial interactions with Huvecs. Purified vitronectin supported adherence of Opc-expressing bacteria to Huvecs but not of Opc-bacteria. These interactions were inhibited by mAb B306 against Opc, by RGDS peptides as well as by blocking antibodies directed against αvβ-3 but not antibodies against other integrins. These data suggest that a sequence of molecular events resulting in trimolecular complexes at the endothelial surface may drive neisserial invasion of Huvesc. The expression of Opc appears to enable bacteria to utilize the normal signal-transduction mechanism of host cells via ligands in sera that adhere to endothelial cell integrins.  相似文献   

8.
The integrins   总被引:7,自引:0,他引:7       下载免费PDF全文
The integrins are a superfamily of cell adhesion receptors that bind to extracellular matrix ligands, cell-surface ligands, and soluble ligands. They are transmembrane αβ heterodimers and at least 18 α and eight β subunits are known in humans, generating 24 heterodimers. Members of this family have been found in mammals, chicken and zebrafish, as well as lower eukaryotes, including sponges, the nematode Caenorhabditis elegans (two α and one β subunits, generating two integrins) and the fruitfly Drosophila melanogaster (five α and one β, generating five integrins). The α and β subunits have distinct domain structures, with extracellular domains from each subunit contributing to the ligand-binding site of the heterodimer. The sequence arginine-glycine-aspartic acid (RGD) was identified as a general integrin-binding motif, but individual integrins are also specific for particular protein ligands. Immunologically important integrin ligands are the intercellular adhesion molecules (ICAMs), immunoglobulin superfamily members present on inflamed endothelium and antigen-presenting cells. On ligand binding, integrins transduce signals into the cell interior; they can also receive intracellular signals that regulate their ligand-binding affinity. Here we provide a brief overview that concentrates mostly on the organization, structure and function of mammalian integrins, which have been more extensively studied than integrins in other organisms.  相似文献   

9.
The integrin family was originally described as a family of adhesion receptors, utilized by cells for attachment to and migration across components of the extracellular matrix. Epithelial cells in adult tissues are generally stationary cells, but these cells nevertheless express several different integrins. This review will discuss the evidence that integrins on epithelial cells are also likely to function as signaling molecules, allowing these cells to detect attachment or detachment, and changes in the local composition of ligands. Signals initiated by integrins appear to modulate epithelial cell differentiation, proliferation, survival, and gene expression. Because the local concentration of integrin ligands is altered by injury, inflammation, and remodeling, signals initiated through integrins are likely to play important roles in the responses of epithelial cells to each of these processes.  相似文献   

10.
生物被膜是微生物附着在生物或非生物表面所形成的一种三维结构,细胞被其自身所产生的胞外聚合物所包围,生物被膜的形成被认为是微生物应对生物和非生物胁迫时所产生的一种自我防御机制。众多微生物能够在植物叶、维管束和根等组织中生长,并在植物不同组织表面附着形成生物被膜,病原细菌的生物被膜随植物内部环境动态变化是其有效发挥致病作用的关键,研究植物病原细菌生物被膜调控机制是认识植物-病原菌互作的重要方面。文中将系统地介绍植物病原细菌生物被膜特征、组成成分、分子调控机制及最新研究进展。  相似文献   

11.
12.
Integrins are alpha/beta heterodimers, but recent in vitro and in vivo experiments also suggest an ability to associate through their transmembrane domains to form homomeric interactions. While the results of some in vitro experiments are consistent with an interaction mediated by a GxxxG-like motif, homo-oligomers observed after in vivo cross-linking are consistent with an almost opposite helix-helix interface. We have shown recently that both models of interaction are compatible with evolutionary conservation data, and we predicted that the alpha-helices in both models would have a similar rotational orientation. Herein, we have tested our prediction using in vitro asparagine scan of five consecutive residues along the GxxxG-like motif of the transmembrane domain of alpha and beta integrins, alphaM and beta2. We show that Asn-mediated dimerization occurs twice for every turn of the helix, consistent with two almost opposite forms of interaction as suggested previously for alphaIIb and beta3 transmembrane domains. The orientational parameters helix tilt and rotational orientation of each of these two Asn-stabilized dimers were measured by site-specific infrared dichroism (SSID) in model lipid bilayers and were found to be consistent with our predicted computational models. Our results highlight an intrinsic tendency for integrin transmembrane alpha-helices to form two opposite types of homomeric interaction in addition to their heteromeric interactions and suggest that integrins may form complex and specific networks at the transmembrane domain during function.  相似文献   

13.
Integrins are major receptors used by cells to interact with extracellular matrices. In this paper, we identify the first ligands for the beta 8 family of integrins, presenting evidence that integrin heterodimers containing the beta 8 subunit mediate interactions of chick sensory neurons with laminin-1, collagen IV, and fibronectin. A polyclonal antibody, anti-beta 8-Ex, was prepared to a bacterial fusion protein expressing an extracellular portion of the chicken beta 8 subunit. In nonreducing conditions, this antibody immunoprecipitated from surface-labeled embryonic dorsal root ganglia neurons a M(r) 100 k protein, the expected M(r) of the beta 8 subunit, and putative alpha subunit(s) of M(r) 120 k. Affinity-purified anti-beta 8-Ex strongly inhibited sensory neurite outgrowth on laminin-1, collagen IV, and fibronectin-coated substrata. Binding sites were identified in a heat-resistant domain in laminin-1 and in the carboxyl terminal, 40-kDa fibronectin fragment. On substrates coated with the carboxyl terminal fragment of fibronectin, antibodies to beta 1 and beta 8 were only partially effective alone, but were completely effective in combination, at inhibiting neurite outgrowth. Results thus indicate that the integrin beta 8 subunit in association with one or more alpha subunits forms an important set of extracellular matrix receptors on sensory neurons.  相似文献   

14.
The leukocyte integrins   总被引:11,自引:0,他引:11  
  相似文献   

15.
Tenascin-C (TNC) is highly expressed in cancer tissues. Its cellular sources are cancer and stromal cells, including fibroblasts/myofibroblasts, and also vascular cells. TNC expressed in cancer tissues dominantly contains large splice variants. Deposition of the stroma promotes the epithelial-mesenchymal transition, proliferation, and migration of cancer cells. It also facilitates the formation of cancer stroma including desmoplasia and angiogenesis. Integrin receptors that mediate the signals of TNC have also been discussed.  相似文献   

16.
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.  相似文献   

17.
We discuss the diffusion of clusters of integrins (and other similar membrane proteins) on a cell membrane with a cortical cytoskeleton. We argue that protein clusters—in contrast with normal oligomers, which are forced to pass through cytoskeletal barriers all at once—should be treated essentially as many-legged random walkers that can pass through a cytoskeletal barrier by putting one leg at a time through the fence. We present the mathematics that should describe the phenomenon, which result in a two-parameter model of diffusion that should apply to any cluster size. We also perform and discuss numerical simulations of the effect in the erythrocyte model system.  相似文献   

18.
The membrane bound gamma-glutamyltransferase (gamma-GT) is capable of utilizing both glutathione, GSH, and glutamine, gln, as the natural gamma-glutamyl donor. The enzyme is oriented in the membrane to react with extracellular substrates and is present on both the brush border and peritubular capillaries. The reaction catalyzed by gamma-GT is critically dependent upon the ratio of gamma-glutamyl donor/gamma-GT which under near physiological conditions results in the formation of gamma-glutamyl peptide and glu on the blood and urine side respectively; this effectively establishes an osmotic gradient which could contribute to transepithelial and transcapillary water fluxes. Interestingly, utilization of extrarenal gamma-glutamyl substrates are quantitatively more significant in the microvascular than brush border location. Delivery of gln to these enzymes sites is some 20 times greater than GSH. Gln utilization unlike GSH is limited by the reaction with the gamma-glutamyl donor site; thus reactivity is greatly enhanced by the maleate like activator hippurate which may account for the acidosis-induced adaptation in ammonia formation from gln by this enzyme. Coupled to a role in ammoniagenesis the brush border enzyme appears to play a role in the reabsorption of filtered gln. The hydrolysis of filtered GSH as well as its utilization in transfer reactions involved in amino acid reabsorption at the brush border may reflect the role of the enzyme in eliminating osmotically active solutes from the urine and thereby facilitating water fluxes. However the role of gln as a gamma-glutamyl donor relative to GSH will depend upon the quantitative significance of tubular GSH synthesis and secretion.  相似文献   

19.
"Nanoimprinting", whereby topographical features are directly imprinted on or in cells, has recently been documented. The mechanism(s) underlying this may explain the cause of cell behavioural alterations as a result of contact with nanotopography. Integrin-mediated cell-substrate adhesions are likely to play a key role in this phenomenon due to their involvement in bidirectional signalling between extra- and intracellular environments. We describe the effects of blocking beta1 and beta3 integrin subunits on the ability of the cytoskeleton to conform to colloidal-derived nanotopography. Scanning electron and atomic force microscopy were used to characterise substrate nanofeatures. Nanofeature circularity was calculated relative to substrate topography and the cytoskeleton of cells cultured on patterned and planar surfaces in the presence/absence of beta1/beta3 integrin antibody. Cross-correlation investigations were similarly conducted by producing a target image relative to individual topographical nanofeatures. This was then compared with cytoskeletal patterning in the presence/absence of beta integrin antibodies. Inhibiting the beta1 subunits increased the ability of fibroblasts to nanoimprint, while inhibiting the beta3 subunit reduced nanoimprinting of the topography to the cell. Fibroblasts cultured on planar substrates also expressed some features sharing similarities with those observed in cells on the nanotopography, indicating an inherent cytoskeletal nanopatterning at high resolution.  相似文献   

20.
Recent work has shown that integrin receptors serve not only as structural receptors that connect the extracellular matrix to the cytoskeleton, but also as signalling receptors that regulate intracellular pH, intracellular free calcium, phosphorylation of proteins on tyrosine and inositol lipid turnover. The ability of extracellular matrix to influence growth, differentiation and other cell functions is very likely related to their effects on signaling pathways inside the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号