首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and structure-activity relationship (SAR) study of L-amino acid-based N-type calcium channel blockers are described. The compounds synthesized were evaluated for inhibitory activity against both N-type and L-type calcium channels focusing on selectivity to reduce cardiovascular side effects due to blocking of L-type calcium channels. In the course of screening of our compound library, N-(t-butoxycarbonyl)-L-aspartic acid derivative 1a was identified as an initial lead compound for a new series of N-type calcium channel blockers, which inhibited calcium influx into IMR-32 human neuroblastoma cells with an IC(50) of 3.4 microM. Compound 1a also exhibited blockade of N-type calcium channel current in electrophysiological experiment using IMR-32 cells (34% inhibition at 10 microM, n=3). As a consequence of conversion of amino acid residue of 1a, compound 12a, that include N-(t-butoxycarbonyl)-L-cysteine, was found to be a potent N-type calcium channel blocker with an IC(50) of 0.61 microM. Thus, L-cysteine was selected as a potential structural motif for further modification. Optimization of C- and N-terminals of L-cysteine using S-cyclohexylmethyl-L-cysteine as a central scaffold led to potent and selective N-type calcium channel blocker 21f, which showed improved inhibitory potency (IC(50) 0.12 microM) and 12-fold selectivity for N-type calcium channels over L-type channels.  相似文献   

2.
3.
For the novel, potent, and selective T-type Ca2+ channel blockers, a series of sulfonamido-containing 3,4-dihydroquinazoline derivatives were prepared and evaluated for their blocking actions on T- and N-type Ca2+ channels. Among them, 9c (KYS05064, IC50 = 0.96 +/- 0.22 microM) was found to be as potent as Mibefradil and also showed the highest selectivity for T-type Ca2+ channel with no effect on N-type Ca2+ channel.  相似文献   

4.
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations <300 nM but was increased in amplitude when external Ca(2+) was substituted with Ba(2+). Both Ni(2+) and mibefradil reduced the T current with an IC(50) = 7 +/- 1 microM and approximately 40 nM, respectively. Spontaneous electrical activity recorded with intracellular electrodes from strips of rabbit urethra consisted of complexes comprising a series of spikes superimposed on a slow spontaneous depolarization (SD). Inhibition of T current reduced the frequency of these SDs but had no effect on either the number of spikes per complex or the amplitude of the spikes. In contrast, application of nifedipine failed to significantly alter the frequency of the SD but reduced the number and amplitude of the spikes in each complex.  相似文献   

5.
T-type calcium channel is one of therapeutic targets for the treatment of cardiovascular diseases and neuropathic pains. Since the withdrawal of mibefradil, a T-type calcium channel blocker, there have been a lot of efforts to develop T-type calcium channel blockers. A small molecule library of dioxoquinazoline carboxamide derivatives containing 155 compounds was designed, synthesized, and biologically evaluated for T-type calcium channel blocking activity. Among those compounds synthesized, the compound 1n shows the most potent T-type calcium current blocking activity with an IC(50) value of 1.52 microM, which is comparable to that of mibefradil.  相似文献   

6.
Morpholin-2-one-5-carboxamide derivatives were prepared by using the one-pot Ugi multicomponent reaction and evaluated for blocking effects on T- and N-type Ca(2+) channels. Among them, compound 5i produced the highest potency (IC(50)=0.45+/-0.02 microM), while compounds 5d, 5f, 5k, 5n, 5o, and 6m produced relatively high potency as well as selectivity on T-type Ca(2+) channels. These novel scaffolds showed potent and selective T-type Ca(2+) channel blocking activities.  相似文献   

7.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

8.
We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.  相似文献   

9.
In the present study we examine the mechanism by which thaligrisine, a bisbenzyltetrahydroisoquinoline alkaloid, inhibits the contractile response of vascular smooth muscle. The work includes functional studies on rat isolated aorta and tail artery precontracted with noradrenaline or KCl. In other experiments rat aorta was precontracted by caffeine in the presence or absence of extracellular Ca2+. In order to assess whether thaligrisine interacts directly with calcium channel binding sites or with alpha-adrenoceptors we examined the effect of the alkaloid on [3H]-(+)-cis diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The functional studies showed that the alkaloid inhibited in a concentration-dependent manner the contractile response induced by depolarization in rat aorta (IC50 = 8.9+/-2.9 microM, n=5) and in tail artery (IC50 = 3.04+/-0.3 microM, n=6) or noradrenaline induced contraction in rat aorta (IC50 = 23.0+/-0.39 microM, n=9) and in tail artery (IC50 = 3.8+/-0.9 microM, n=7). In rat aorta, thaligrisine concentration-dependently inhibited noradrenaline-induced contraction in Ca2+-free solution (IC50 = 13.3 microM, n=18). The alkaloid also relaxed the spontaneous contractile response elicited by extracellular calcium after depletion of noradrenaline-sensitive intracellular stores (IC50 = 7.7 microM, n=4). The radioligand receptor-binding study showed that thaligrisine has higher affinity for [3H]-prazosin than for [3H]-(+)-cis-diltiazem binding sites, with Ki values of 0.048+/-0.007 microM and 1.5+/-1.1 microM respectively. [3H]-nitrendipine binding was not affected by thaligrisine. The present work provides evidence that thaligrisine shows higher affinity for [3H]-prazosin binding site than [3H]-(+)-cis-diltiazem binding sites, in contrast with tetrandrine and isotetrandrine that present similar affinity for both receptors. In functional studies thaligrisine, acted as an alpha1-adrenoceptor antagonist and as a Ca2+ channel blocker, relaxing noradrenaline or KCl-induced contractions in vascular smooth muscle. This compound specifically inhibits the refilling of internal Ca2+-stores sensitive to noradrenaline, by blocking Ca2+-entry through voltage-dependent Ca2+-channels.  相似文献   

10.
We have synthesized 3,4-dihydroquinazoline derivatives for the potent and selective T-type Ca(2+) channel blockers and evaluated for their inhibitory activities against two subtypes T-type Ca(2+) channels and N-type Ca(2+) channels. Among them, 5b (KYS05044, IC(50)=0.56+/-0.10 microM) was identified as potent T-type Ca(2+) channel blocker with in vitro selectivity profile at meaningful level (T/N-type, SI=>100).  相似文献   

11.
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine ICC and also from canine colonic ICC. Mibefradil has a higher affinity for T-type over L-type Ca2+ channels, and the drug has been used in the gastrointestinal tract to identify T-type currents. However, the selectivity of mibefradil for T-type Ca2+ channels over ICC and smooth muscle Na+ channels has not been clearly demonstrated. The aim of this study was to determine the effect of mibefradil on T-type and L-type Ca2+ and Na+ currents. Whole cell currents were recorded from HEK-293 cells coexpressing green fluorescent protein with either the rat brain T-type Ca2+ channel alpha(1)3.3b + beta(2), the human intestinal L-type Ca2+ channel subunits alpha(1C) + beta(2), or Na(V)1.5. Mibefradil significantly reduced expressed T-type Ca2+ current at concentrations > or = 0.1 microM (IC(50) = 0.29 microM), L-type Ca2+ current at > 1 microM (IC(50) = 2.7 microM), and Na+ current at > or = 0.3 microM (IC(50) = 0.98 microM). In conclusion, mibefradil inhibits the human intestinal tetrodotoxin-resistant Na+ channel at submicromolar concentrations. Caution must be used in the interpretation of the effects of mibefradil when several ion channel classes are coexpressed.  相似文献   

12.
Currents carried by L-, N-, and P/Q-type calcium channels do not account for the total calcium current in myenteric neurons. This study identified all calcium channels expressed by guinea pig small intestinal myenteric neurons maintained in primary culture. Calcium currents were recorded using whole cell techniques. Depolarizations (holding potential = -70 mV) elicited inward currents that were blocked by CdCl(2) (100 microM). Combined application of nifedipine (blocks L-type channels), Omega-conotoxin GVIA (blocks N-type channels), and Omega-agatoxin IVA (blocks P/Q-type channels) inhibited calcium currents by 56%. Subsequent addition of the R-type calcium channel antagonists, NiCl(2) (50 microM) or SNX-482 (0.1 microM), abolished the residual calcium current. NiCl(2) or SNX-482 alone inhibited calcium currents by 46%. The activation threshold for R-type calcium currents was -30 mV, the half-activation voltage was -5.2 +/- 5 mV, and the voltage sensitivity was 17 +/- 3 mV. R-type currents activated fully in 10 ms at 10 mV. R-type calcium currents inactivated in 1 s at 10 mV, and they inactivated (voltage sensitivity of 16 +/- 1 mV) with a half-inactivation voltage of -76 +/- 5 mV. These studies have accounted for all of the calcium channels in myenteric neurons. The data indicate that R-type calcium channels make the largest contribution to the total calcium current in myenteric neurons. The relatively positive half-activation voltage and rapid activation kinetics suggest that R-type channels could contribute to calcium entry during somal action potentials or during action potential-induced neurotransmitter release.  相似文献   

13.
Blebbistatin is a myosin II-specific inhibitor. However, the mechanism and tissue specificity of the drug are not well understood. Blebbistatin blocked the chemotaxis of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (IC(50) = 26.1 +/- 0.2 and 27.5 +/- 0.5 microM for GbaSM-4 and A7r5 cells, respectively) and platelet-derived growth factor BB (IC(50) = 32.3 +/- 0.9 and 31.6 +/- 1.3 muM for GbaSM-4 and A7r5 cells, respectively) at similar concentrations. Immunofluorescence and fluorescent resonance energy transfer analysis indicated a blebbistatin-induced disruption of the actin-myosin interaction in VSMCs. Subsequent experiments indicated that blebbistatin inhibited the Mg(2+)-ATPase activity of the unphosphorylated (IC(50) = 12.6 +/- 1.6 and 4.3 +/- 0.5 microM for gizzard and bovine stomach, respectively) and phosphorylated (IC(50) = 15.0 +/- 0.6 microM for gizzard) forms of purified smooth muscle myosin II, suggesting a direct effect on myosin II motor activity. It was further observed that the Mg(2+)-ATPase activities of gizzard myosin II fragments, heavy meromyosin (IC(50) = 14.4 +/- 1.6 microM) and subfragment 1 (IC(50) = 5.5 +/- 0.4 microM), were also inhibited by blebbistatin. Assay by in vitro motility indicated that the inhibitory effect of blebbistatin was reversible. Electron-microscopic evaluation showed that blebbistatin induced a distinct conformational change (i.e., swelling) of the myosin II head. The results suggest that the site of blebbistatin action is within the S1 portion of smooth muscle myosin II.  相似文献   

14.
Our drug discovery efforts for N-type calcium channel blockers in the 4-piperidinylaniline series led to the discovery of an orally active analgesic agent 26.1-[4-Dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethyl-but yl)-phenyl]-(3-methyl-but-2-enyl)amine (26) showed high affinity to functionally block N-type calcium channels (IC50=0.7 microM in the IMR32 assay) and exhibited high efficacy in the anti-writhing analgesia test with mice (ED50=12 mg/kg by po and 4 mg/kg by iv). In this report, the rationale for the design, synthesis, biological evaluation, and pharmacokinetics of this series of blockers is described.  相似文献   

15.
We investigated the effects of 17beta-estradiol, an estrogen, on [(3)H]norepinephrine ([(3)H]NE) secretion in PC12 cells. Pretreatment with 17beta-estradiol reduced 70 mM K(+)-induced [(3)H]NE secretion in a concentration-dependent manner with a half-maximal inhibitory concentration (IC(50)) of 2 +/- 1 microM. The 70 mM K(+)-induced cytosolic free Ca(2+) concentration ([Ca(2+)](i)) rise was also reduced when the cells were treated with 17beta-estradiol (IC(50) = 15 +/- 2 microM). Studies with voltage-sensitive calcium channel (VSCC) antagonists such as nifedipine and omega-conotoxin GVIA revealed that both L- and N-type VSCCs were affected by 17beta-estradiol treatment. The 17beta-estradiol effect was not changed by pretreatment of the cells with actinomycin D and cycloheximide for 5 h. In addition, treatment with pertussis or cholera toxin did not affect the inhibitory effect of 17beta-estradiol. 17beta-Estradiol also inhibited the ATP-induced [(3)H]NE secretion and [Ca(2+)](i) rise. In PC12 cells, the ATP-induced [Ca(2+)](i) rise is known to occur through P2X(2) receptors, the P2Y(2)-mediated phospholipase C (PLC) pathway, and VSCCs. 17beta-Estradiol pretreatment during complete inhibition of the PLC pathway and VSCCs inhibited the ATP-induced [Ca(2+)](i) rise. Our results suggest that 17beta-estradiol inhibits catecholamine secretion by inhibiting L- and N-type Ca(2+) channels and P2X(2) receptors in a nongenomic manner.  相似文献   

16.
The cyclin dependent kinase (cdk) inhibitor NU6027, 4-cyclohexylmethoxy-5-nitroso-pyrimidine-2,6-diamine (IC(50) vs cdk1/cyclinB1=2.9+/-0.1 microM and IC(50) vs cdk2/cyclinA3=2.2+/-0.6 microM), was used as the basis for the design of a series of 4-alkoxy-2,6-diamino-5-nitrosopyrimidine derivatives. The synthesis and evaluation of 21 compounds as potential inhibitors of cyclin-dependent kinases 1 and 2 is described and the structure-activity relationships relating to NU6027 have been probed. Simple alkoxy- or cycloalkoxy-groups at the O(4)-position were tolerated, with the 4-(2-methylbutoxy)-derivative (IC(50) vs cdk1/cyclinB1=12+/-2 microM and cdk2/cyclinA3=13+/-4 microM) retaining significant activity. Substitutions at the N(6) position were not tolerated. Replacement of the 5-nitroso substituent with ketone, oxime and semicarbazone groups essentially abolished activity. However, the derivative bearing an isosteric 5-formyl group, 2,6-diamino-4-cyclohexylmethoxy-pyrimidine-5-carbaldehyde, showed modest activity (IC(50) vs cdk1/cyclinB1=35+/-3 microM and cdk2/cyclinA3=43+/-3 microM). The X-ray crystal structure of the 5-formyl compound bound to cdk2 has been determined to 2.3A resolution. The intramolecular H-bond deduced from the structure with NU6027 bound to cdk2 is not evident in the structure with the corresponding formyl compound. Thus the parent compound, 4-cyclohexylmethoxy-5-nitrosopyrimidine-2,6-diamine (NU6027), remains the optimal basis for future structure-activity studies for cyclin-dependent kinase inhibitors in this series.  相似文献   

17.
A benzothiazole-derived compound (4a) designed to mimic the C(alpha)-C(beta) bond vectors and terminal functionalities of Lys2, Tyr13 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low microM binding affinity to N-type VGCCs (IC(50)=1.9 microM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC(50)= 4.1 microM) showed a greater than 25-fold selectivity for the N-type channel.  相似文献   

18.
ONO-4057(5-[2-(2-Carboxyethyl)-3-[6-(4-methoxyphenyl)-5E- hexenyl]oxyphenoxy]valeric acid), an orally active leukotriene B4(LTB4) antagonist, displaced the binding of [3H] LTB4 to the LTB4 receptor in human neutrophil (Ki = 3.7 +/- 0.9 nM). ONO-4057 inhibited the LTB4-induced rise in cytosolic free calcium (the concentration causing 50% inhibition (IC50) = 0.7 +/- 0.3 microM) and inhibited human neutrophil aggregation, chemotaxis or degranulation induced by LTB4 (IC50 = 3.0 +/- 0.1, 0.9 +/- 0.1 and 1.6 +/- 0.1 microM) without showing any agonist activity at concentration up to 30 microM. ONO-4057 did not inhibit fMLP or C5a-induced neutrophil activation at concentrations up to 30 microM. In the in vivo study, ONO-4057 given orally, prevented LTB4-induced transient neutropenia or intradermal neutrophil migration in guinea pig (the dose causing 50% efficacy (ED50) = 25.6mg/kg or 5.3mg/kg). Furthermore, ONO-4057 given topically, suppressed phorbol-12-myristate-13-acetate (PMA)-induced neutrophil infiltration in guinea pig ear (the effective dose = 1 mg/ear). These results indicate that ONO-4057 is a selective and orally active LTB4 antagonist and may be a potential candidate for the treatment of various inflammatory diseases.  相似文献   

19.
Synthesis and structure-activity relationship (SAR) studies of L-cysteine-based N-type calcium channel blockers are described. In the course of exploring SAR of the N- and C-terminal substituents, the L-cysteine derivative was found to be a potent N-type calcium channel blocker with an IC(50) value of 0.14 microM on IMR-32 assay. Compound showed 12-fold selectivity for N-type over L-type calcium channels on AtT-20 assay.  相似文献   

20.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号