首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 979 毫秒
1.
We investigated the subcellular distribution of antigenic sites immunoreactive to the monoclonal antibody 16.4B4 (PM Norman, VPM Wingate, MS Fitter, CJ Lamb [1986] Planta 167: 452-459) in tobacco (Nicotiana tabacum) leaf cells. This antibody is directed against a glycan epitope in a family of plasma membrane arabinogalactan proteins of 135 to 180 kilodaltons, elaborated from a polypeptide of relative molecular mass 50 kilodaltons (PM Norman, P Kjellbom, DJ Bradley, MG Hahn, CJ Lamb [1990] Planta 181: 365-373). We demonstrated by immunogold electron microscopy that the epitope reactive with monoclonal antibody 16.4B4 is localized on the cell surface in the leaf parenchyma cell periplast. The 16.4B4 antigen is also localized in multivesicular invaginations of the plasma membrane also known as plasmalemmasomes, implying a biochemical and, hence, functional interrelationship between these structures. Monoclonal antibody 16.4B4 also labels intracellular multivesicular bodies that appear to represent internalized plasmalemmasomes. Antibody reactivity was also observed in partially degraded multivesicular bodies sequestered within the central vacuole. We propose that the subcellular distribution of the epitope reactive with monoclonal antibody 16.4B4 defines a plasmalemmasome (or multivesicular body-mediated) pathway for the internalization of the periplasmic matrix for vacuolar mediated disposal. The multivesicular bodies appear to be equivalent to the well-characterized endosomes and multivesicular bodies of animal cells involved in the internalization and lysosome-mediated degradation of extracellular materials.  相似文献   

2.
Embryogenic units of friable maize callus are formed as globular or oblong packets of tightly associated meristematic cells. These units are surrounded by conspicuous cell walls visible in light microscopy after staining with basic fuchsin. Transmission electron microscopy revealed that embryogenic cells are rich in endoplasmic reticulum, polysomes and small protein bodies, and that the outermost layer of their cell walls is composed of fibrillar material. Electron microscopy has also shown that this material covers the surface of embryogenic cells as a distinct layer which we denote as extracellular matrix surface network (ECMSN). Employing histochemical staining with β-glucosyl Yariv phenylglycoside, we localized arabinogalactan-proteins (AGPs) to the outer cell walls of embryogenic units including ECMSN. The most prominent staining was found in cell-cell junction domains. Large non-embryogenic callus cells were not stained with this AGP-specific dye. Immunofluorescence and silver-enhanced immunogold labelling using monoclonal antibody JIM4 has shown that the ECMSN of embryogenic cells is equipped with JIM4 epitope, while non-embryogenic callus cells are devoid of this epitope. We propose that some specific AGPs of the ECMSN might be relevant for cell-cell adhesion and recognition of embryogenic cells during early embryogenic stages, and that the JIM4 antibody can serve as an early marker of embryogenic competence in maize callus culture. Received: 13 March 1998 / Revision received: 6 June 1998 / Accepted: 1 July 1998  相似文献   

3.
We have raised a monoclonal antibody, 4G6, against gut manually isolated from stage 42Xenopus laevis embryos. It is specific for endoderm and recognises an epitope that is first expressed at stage 19 and which persists throughout subsequent development. The antibody maintains gut specificity through metamorphosis and into adulthood. The epitope is conserved in the mouse, where it is also found in the gut. Isolated vegetal poles fromXenopus blastula stage embryos express the epitope autonomously after culturing to the appropriate stage. This shows that certain aspects of endoderm differentiation do not require germ layer interactions. Animal cap cells from stage 9 blastulae cultured in the presence of the mesodermal growth factors FGF, XTC-MIF and PIF form both endodermal and mesodermal tissues, assessed by the binding of tissue-specific monoclonal antibodies. Endoderm is typically found in those caps which form intermediate and ventral forms of mesoderm, that is muscle and lateral plate. Correspondence to: E.A. Jones  相似文献   

4.
Although Borrelia burgdorferi, the causative agent of Lyme disease, is found at the site of many disease manifestations, local infection may not explain all its features. B. burgdorferi's flagellin cross-reacts with a component of human peripheral nerve axon, previously identified as heat shock protein 60 (HSP60). The cross-reacting epitopes are bound by a monoclonal antibody to B. burgdorferi's flagellin, H9724. Addition of H9724 to neuroblastoma cell cultures blocks in vitro spontaneous and peptide growth-factor–stimulated neuritogenesis. Withdrawal of H9724 allows return to normal growth and differentiation. Using electron microscopy, immunoprecipitation and immunoblotting, and FACS analysis we sought to identify the site of binding of H9724, with the starting hypotheses that the binding was intracellular and not identical to the binding site of II-13, a monoclonal anti-HSP60 antibody. The current studies show that H9724 binds to an intracellular target in cultured cells with negligible, if any, surface binding. We previously showed that sera from patients with neurological manifestations of Lyme disease bound to human axons in a pattern identical to H9724's binding; these same sera also bind to an intracellular neuroblastoma cell target. II-13 binds to a different HSP60 epitope than H9724; II-13 does not modify cellular function in vitro. As predicted, II-13 bound to mitochondria, in a pattern of cellular binding very different from H9724, which bound in a scattered cytoplasmic, nonorganelle-related pattern. H9724's effect is the first evidence that HSP60 may play a role in peptide-hormone–receptor function and demonstrates the modulatory potential of a monoclonal antibody on living cells.  相似文献   

5.
The distributions of desmin and vimentin intermediate filaments in cultured hamster heart cells were examined by immunofluorescent microscopy and an immunogold deep-etching replica technique in combination with electron microscopy. Fluorescent studies showed the overall staining patterns of the myocytes as well as the fibroblasts. Monoclonal antibodies (Da, D3) to desmin showed punctate staining for the myocytes, while polyclonal desmin (pD) stained in a filamentous pattern. Fibroblasts stained strongly with monoclonal anti-vimentin (Va), but did not stain with the desmin probes. Deep-etched immunogold studies confirmed at the ultrastructural level that monoclonal anti-desmin antibodies stain individual intermediate filaments in an intermittent pattern. Monoclonal (D3) antibody stained the intermediate filaments heavily and continuously at the cell peripheries, while it stained intermittently in the cell body, similar to the Da monoclonal. Monoclonal anti-vimentin stained only intermediate filaments in fibroblasts. Our studies show a heterogeneity of staining within the cultured heart cells when various anti-desmin and anti-vimentin antibodies are used.  相似文献   

6.
Summary Tube foot epidermal cells of the sea urchin Strongylocentrotus purpuratus were examined by transmission electron microscopy and fluorescence microscopy to identify the chemical nature of prominent bundles of cytoplasmic filaments. Cross sections revealed filaments of roughly 7–8 nm in diameter closely packed into dense bundles. These bundles, in turn, were each surrounded by a loose sheath of microtubules. The filament size and negative reaction with the fluorescent F-actin binding drug NBD-phallacidin indicated that they were not actin. Indirect immunofluorescence microscopy of whole tissues and frozen sections revealed a strong reaction of the filaments with a monoclonal antibody prepared against porcine stomach desmin. In SDS-polyacrylamide gels of whole tube foot protein, a band of apparent molecular weight around 50 000 daltons reacted with the anti-desmin monoclonal antibody. The combined data provide evidence that the epidermal filament bundles are related to vertebrate intermediate filaments, but further biochemical studies will be necessary to assign them to a particular class of filament proteins.  相似文献   

7.
A 32-wk-gestation female with type II achondrogenesis-hypochondrogenesis has been studied. The clinical features were typical, and radiographs revealed short ribs, hypoplastic ilia, absence of ossification of sacrum, pubis, ischia, tali, calcanei, and many vertebral bodies; the long bones were short with mild metaphyseal flaring. The femoral cylinder index was 6.3. Comparison with previous cases placed the patient toward the mild end of the achondrogenesis-hypochondrogenesis spectrum (Whitley-Gorlin prototype IV). Light microscopy revealed hypercellular cartilage with decreased matrix traversed by numerous fibrous vascular canals. The growth plate was markedly abnormal. Ultrastructural studies revealed prominently dilated rough endoplasmic reticulum containing a fine granular material with occasional fibrils in all chondrocytes. Immunohistologic studies indicated irregular large areas of cartilage matrix staining with monoclonal antibody to human type III collagen. The relative intensity of matrix staining for type II collagen appeared diminished. More striking, however, were intense focal accumulations of type II collagen within small rounded perinuclear structures of most chondrocytes but not other cell types. These results strongly suggest intracellular retention of type II collagen within vacuolar structures, probably within the dilated rough endoplasmic reticulum observed in all chondrocytes by electron microscopy (EM), and imply the presence of an abnormal, poorly secreted type II collagen molecule. Biochemical studies (see companion paper) suggest that this patient had a new dominant lethal disorder caused by a structural abnormality of type II collagen.  相似文献   

8.
We have molecularly cloned a natural variant of feline leukemia virus subtype B. This isolate is unique in that it is not neutralized by a monoclonal antibody which neutralized all other feline leukemia virus isolates tested, including members of the A, B, and C subtypes. Western immunoblotting indicated that the monoclonal antibody was less able to bind to the gp70 of the resistant isolate (designated lambda B1) than to the gp70s of susceptible viruses. Nucleotide sequence analysis of the envelope gene of lambda B1 revealed a high degree of homology with the susceptible Snyder-Theilen, Gardner-Arnstein, and Rickard subtype B isolates, including the presence of a 5-amino-acid minimal binding epitope required for binding by the neutralizing monoclonal antibody. The only change within the vicinity of this epitope was in a single nucleotide, and this difference changed a proline residue to leucine three amino acids from the N terminus of the binding epitope. Competitive binding studies with synthetic peptides indicated that substitution of leucine for proline resulted in a 10-fold decrease in the ability of the peptide to compete for antibody binding to native antigen. The results are consistent with the interpretation that this amino acid change lowers the affinity of antibody binding, resulting in failure of the antibody to neutralize the variant virus.  相似文献   

9.
Homogenous eosinophilic intracytoplasmic inclusion bodies were found within the large reticular neurons of the brain stems of 57 captive woodchucks (Marmota monax). Light microscopy was consistent with a proteinaceous nature, while electron microscopy suggested a non-viral origin. The woodchucks with inclusions were older than the general population that was studied. It is hypothesized that the neuronal inclusions in the brain stem are indicative of nonspecific ageing changes.  相似文献   

10.
Inclusion body disease (IBD) is a worldwide disease in captive boa constrictors (boa constrictor) and occasionally in other snakes of the families Boidae and Pythonidae. The exact causative agent(s) and pathogenesis are not yet fully understood. Currently, diagnosis of IBD is based on the light microscopic identification of eosinophilic intracytoplasmic inclusion bodies in hematoxylin and eosin stained tissues or blood smears. An antigenically unique 68 KDa protein was identified within the IBD inclusion bodies, called IBD protein. A validated immuno-based ante-mortem diagnostic test is needed for screening snakes that are at risk of having IBD. In this study, despite difficulties in solubilizing semi-purified inclusion bodies, utilizing hybridoma technology a mouse anti-IBD protein monoclonal antibody (MAB) was produced. The antigenic specificity of the antibody was confirmed and validated by western blots, enzyme-linked immunosorbent assay, immuno-transmission electron microscopy, and immunohistochemical staining. Paraffin embedded tissues of IBD positive and negative boa constrictors (n=94) collected from 1990 to 2011 were tested with immunohistochemical staining. In boa constrictors, the anti-IBDP MAB had a sensitivity of 83% and specificity of 100% in detecting IBD. The antibody also cross-reacted with IBD inclusion bodies in carpet pythons (Morelia spilota) and a ball python (python regius). This validated antibody can serve as a tool for the development of ante-mortem immunodiagnostic tests for IBD.  相似文献   

11.
Summary Woronin bodies are cytoplasmic organelles which commonly lie near the septa in ascomycetous fungi. Although these organelles were observed nearly 100 years ago, little is known about their origin and development. The present ultrastructural investigation describes the ontogeny of Woronin bodies inFusarium oxysporum f. sp.lycopersici [Sacc.] Snyd. and Hans. In this fungus, Woronin bodies are produced by microbodies. Development of the Woronin body begins with the appearance of electron dense material within the microbody. This material aggregates adjacent to the membrane of the microbody and condenses into a single paracrystalline inclusion. Following its formation, the inclusion is gradually extruded and is eventually separated from the parent organelle by an exocytotic mechanism. After the separation, the paracrystalline inclusion is found at the septal pore. Although many recent electron microscopic studies have used various terms to designate these membrane bound organelles, inFusarium these inclusions are believed to correspond to the Woronin bodies initially described by light microscopists.  相似文献   

12.
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.  相似文献   

13.
CK-STAR, a monoclonal antibody against human brain creatine kinase (CK), can be shown by chemical cleavage mapping and peptide synthesis to recognize an epitope at the free N-terminus of the enzyme. The epitope could be largely reproduced by a synthetic peptide based on the first 18 amino acids and could be partly formed by the first 11 amino acids. The antibody did not bind to native CK, but it did bind to CK in various partially denatured forms and to an enzymically inactive intermediate in the refolding process. Competitive binding studies have shown that the N-terminal conformations of both the refolding intermediate and the free peptide resemble that of CK partially denatured by attachment to plastic. The results suggest that the final stages of CK refolding and reactivation involve a structural change at the N-terminus or its interaction with some other part of the CK molecule, thus masking the CK-STAR epitope.  相似文献   

14.
Monoclonal antibodies binding to different domains of nucleolin have been used to localize nucleolin in tissue culture cells ofXenopus laevis.The monoclonal antibody b6-6E7 binds to an epitope in the N-terminal domain, which contains arrays of phosphorylation consensus sites. This monoclonal antibody binds to nucleolin of oocytes and of eggs with high affinity. In contrast, the monoclonal antibody Nu-1H6 binds poorly to the modified forms of nucleolin arising during meiosis and mitosis. In interphase cells, monoclonal antibody b6-6E7 preferentially stains the periphery of the nucleoli, where most of the rRNA accumulates. Staining by monoclonal antibody Nu-1H6 complements this pattern by staining mainly the center of the nucleoli. The epitope of monoclonal antibody Nu-1H6 is within the central domain of nucleolin, which contains the first two RNA binding domains. RNase treatment of cells results in loss of nucleolin from nucleoli. In mitotic cells, both monoclonal antibodies decorate the surface of condensing chromosomes in prophase. The periphery of the condensed chromosomes in metaphase and anaphase is preferentially stained by monoclonal antibody b6-6E7.  相似文献   

15.
We cloned EF-Tu from Streptomyces aureofaciens on a pET plasmid and overproduced it using the T7 RNA polymerase system in Escherichia coli. Streptomyces EF-Tu represented more than 40% of the total cell protein and was stored mostly in inclusion bodies formed apically at both ends of E. coli cells. Analysis of the inclusion bodies by transmission and scanning electron microscopy did not reveal any internal or surface ultrastructures. We developed the method for purification of S. aureofaciens EF-Tu from isolated inclusion bodies based on the ability of the protein to aggregate spontaneously. EF-Tu present in inclusion bodies was not active in GDP binding. Purified protein showed a similar charge heterogeneity as EF-Tu isolated from the mycelium of S. aureofaciens and all of the isoforms reacted with EF-Tu antibodies. All isoforms also reacted with monoclonal antibodies against O-phosphoserine and O-phosphothreonine.  相似文献   

16.
The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.  相似文献   

17.
Chlamydia-like organisms have been detected in digestive cells and duct cells of the digestive gland of mussels, Mytilus galloprovincialis, collected from the Basque coast. The organisms appeared as basophilic inclusion bodies within digestive cells and consisted of elongate initial reticulate bodies and previously undescribed condensed forms, interpreted as intermediate bodies. Of the 414 mussels examined by light microscopy, 5.31% showed this type of infection. A second type of chlamydia-like organism was found in nonciliated duct cells. The microorganisms were found mostly free in duct cells and large elongate reticulate bodies, intermediate condensing forms, and fully condensed elementary bodies were clearly distinguished. No serious histopathological or ultrastructural changes were observed in host cells but evidences of a possible localized metabolic damage within infected digestive cells is presented.  相似文献   

18.
We describe a monoclonal antibody, WT-31, that reacted with all human T lymphocytes. Electrophoretic analysis of the material reacting with WT-31 revealed that it precipitated predominantly an 80-kD disulfide-linked heterodimer from the cell surface-labeled T leukemic cell line HPB-ALL. This heterodimer was identical to the one precipitated with a recently described monoclonal reagent, T40/25, which recognizes a clonotypic structure on HPB-ALL. The target antigen of WT-31 comodulated with T3 after incubation of T cells with excess anti-T3 antibody, indicating that the WT-31 target antigen is associated with T3. We also found that anti-T3 reagents, but not the clonotypic reagent T40/25, blocked binding of FITC-labeled WT-31 to HPB-ALL cells. This indicates that the T cell receptor epitope recognized by WT-31 is located close to the epitopes recognized by the anti-T3 reagents anti-Leu-4 and SPV-T3b but distal from the clonotypic T40/25 epitope. Functional studies showed that WT-31 reacts similar to anti-T3 antibodies. It is mitogenic for resting T cells, blocks cytolysis mediated by alloantigen-specific CTL clones, and induces antigen-nonspecific cytolysis by CTL clones against Daudi target cells. WT-31 did not inhibit the formation of conjugates, but it blocked cytolysis just before or during the Ca2++-dependent programming for lysis. We conclude that WT-31 is an antibody that recognizes a common determinant on the T cell receptor for antigen. The present results support the notion that the two chains of the T cell receptor (alpha and beta) form a functional protein ensemble with the three invariable T3 polypeptide chains (T3-gamma-, delta-, epsilon).  相似文献   

19.
A lactosaminoglycan-associated antigen is associated with a carbohydrate moiety of all three zona pellucida (ZP) glycoproteins of pig and rabbit but is absent in the mouse and rat. A monoclonal antibody (PS1) recognizing this determinant was obtained by immunizing mice with a porcine ZP glycoprotein isoform purified by two-dimensional polyacrylamide gel electrophoresis. Conditions known to remove O-linked or sialic acid carbohydrate moieties (alkaline reduction; O-glycanase or neuraminidase enzymatic cleavage) did not remove the carbohydrate epitope. However, treatment with endo-beta-glycosidase, endoglycosidase F, or combinations of neuraminidase plus beta-galactosidase, totally removed the determinant, indicating that it is associated with a poly-N-acetyllactosaminoglycan structure present on an N-linked oligosaccharide. Molecular morphology studies using immunofluorescence and confocal microscopy techniques demonstrate that the PS1 antigen is localized at the surface of the ZP. Confirmation of this localization was obtained through studies that show that this antibody will inhibit homologous sperm binding to the pig ZP. Additional analyses using modular contrast microscopy and immunocytochemistry demonstrate that this carbohydrate-associated antigen is localized in discrete layers throughout the ZP matrix. These studies are the first to demonstrate the presence of a lactosaminoglycan type carbohydrate moiety in all three ZP proteins using a monoclonal antibody that appears to be involved in sperm recognition and structural organization.  相似文献   

20.
《MABS-AUSTIN》2013,5(2):428-439
Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R279. Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号