首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
F F Knapp  G J Schroepfer 《Steroids》1975,26(3):339-357
Described herein are chemical syntheses of the following compounds: 4-methyl-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4,4-dimethyl-(24S)-24-ethyl-cholesta-5,22-dien-3-one, 4beta-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24S)-24-ethyl-5alpha-cholest-22-en-3beta-ol, 4-methyl-6beta-bromo-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4alpha-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol, 4alpha,5alpha-epoxy-(24S)-24-ethyl-cholesta-4,22-dien-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholest-22-en-3beta,5alpha-diol, 4beta-methyl-5alpha-hydroxy-(24S)-24-ethyl-cholest-22-en-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-yl acetate and 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol. Chromatographic, nuclear magnetic resonance, and mass spectral data are presented for the compounds under consideration.  相似文献   

2.
New triterpene glycosides, ulososides C, (20S,22S,23R,24S)-3 beta,22, 23-trihydroxy-3-O-(beta-D-glucopyranosyl)-32-nor-24-methyllanost- 8(9)-ene-30-oic acid, D, (20S,22S,23R,24S)-3 beta,22, 23-trihydroxy-3-O-(beta-D-N-acetyl-glucosaminopyranosyl)-32-nor- 24-methyllanost-8(9)-ene-30-oic acid, and E, (20S,22S,23R,24S)-3 beta,22, 23-trihydroxy-3-O-(beta-D-glucuronopyranosyl-(1-->2)-alpha-D- arabinopyranosyl-32-nor-24-methyllanost-8(9)-ene-30-oic acid, were isolated from an Ulosa sp. sponge. Their structures were determined by spectral methods and chemical transformations. Specific features of their structures are discussed.  相似文献   

3.
M Kobayashi  H Mitsuhashi 《Steroids》1975,26(5):605-624
The sterols of the scallop, Patinopecten yessoensis Jay, was found to contain over 20 components. The major components were delta5-sterols, and lesser amount of ring-saturated sterols were also present. Biogenetically unusual C26 sterols (24-norcholesta-5,22-dien-3beta-ol and 24-norcholest-22-en-3beta-ol) and 24(28)-cis-24-propylidenecholest-5-en-3beta-ol (29-methylisofucosterol), 22-trans-27-nor-(24S)-24-methylcholesta-5,22-dien-3beta-ol (occelasterol), and a new sterol, 22-trans-27-nor-(24S)-24-methylcholest-22-en-3beta-ol (patinosterol), were isolated and their structures were confirmed. Occurrence of 22-trans-(24S)-24-methylcholesta-5,22-dien-3beta-ol (24-epibrassicasterol) was confirmed. 22-cis-Cholesta-5,22-dien-3beta-ol was not found.  相似文献   

4.
Four sterols, isolated from the scallop Pacopecten magellanicus have been identified as 24-nor-5alpha-cholest-22-en-3beta-ol; 24-norcholest-5-en-3beta-ol; 5alpha-cholest-22-en-3beta-ol; and (E) -24-propylidenecholest-5-en-3beta-ol. These bring to seventeen the total number of sterols identified in this marine mollusc. A fifth newly detected sterol, closely similar in its mass spectrometric properties is 22-cis and trans-cholesta-5, 22-dien-3beta-ol, was clearly distinguished from these by its shorter retention time by GLC.  相似文献   

5.
A trisulfated derivative of 24,25,26,26-tetramethyl-5 alpha-cholest-23E-ene-2 alpha, 3 beta, 6 alpha-triol (sokotrasterol sulfate) has been isolated from the sponge Halichondriidae gen. sp., collected near Sokotra Island (Arabian Sea), and its structure has been elucidated. The side chain of the new steroid involves a "normal" alkylation at C-24 and the unprecedented addition of two extra methyl groups at C-26 and one extra methyl group at C-25. A free sterol fraction contained only 24-isopropyl-5-cholesten-3 beta-ol and 24-isopropyl-5, 22E-cholestadien-3 beta-ol. 24-Isopropyl-5, 22E-cholestadien-3 beta-ol as sole monohydroxy sterol and halistanol sulfate as major polyhydroxylated steroid derivative have been detected in Halichondria sp., a Madagascar sponge.  相似文献   

6.
Steroidal glycosides from the bulbs of Lilium dauricum.   总被引:2,自引:0,他引:2  
The bulbs of Lilium dauricum yielded 11 compounds, including six new steroidal glycosides. The structures have been determined by spectral analysis and hydrolysis to be (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl-( 1----3)]- beta-D-glucopyranoside, (25R,26R)-26-methoxyspirost-5-en-3 beta-ol 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[beta-D-glucopyranosyl-(1----4)]- beta-D-glucopyranoside, (25R)-spirost-5-en-3 beta-ol (diosgenin) 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L-arabinopyranosyl- (1----3)]-beta-D-glucopyranoside, (25R)-3 beta,17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside, (25R)-3 beta, 17 alpha-dihydroxy-5 alpha-spirostan-6-one 3-O-alpha-L-rhamnopyranosyl-(1----2)-O-[alpha-L- arabinopyranosyl-(1----3)]-beta-D-glucopyranoside and (20R,22R)-3 beta,20,22-trihydroxy-5 alpha-cholestan-6-one (tenuifoliol) 3-O-alpha-L-rhamnopyranosyl-(1----2)-beta-D-glucopyranoside. The absolute configurations of C-20 and C-22 of tenuifoliol were further confirmed by detailed analysis of the NOE difference spectrum of the corresponding isopropylidene derivative. Several known compounds were also isolated and identified.  相似文献   

7.
Analysis of the sterol fraction obtained from the Colombian Caribbean sponge Topsentia ophiraphidites revealed that this sponge is a rich source of C30 and C31 sterols. Among them, a new C31 sterol, named ophirasterol, was isolated, and its structure was established as (22E,24R)-24-(1-buten-2-yl)cholesta-5,22-dien-3beta-ol (1) by spectral means and comparison with synthetic C-24 epimers with known configuration. Other isolated C30 and C31 sterols were the known 24-ethyl-24-methyl-22-dehydrocholesterol (2), 24-isopropyl-22-dehydrocholesterol (3), 24-isopropylcholesterol (4), 24-ethyl-24-methylcholesterol (5), 24-isopropenyl-25-methyl-22-dehydrocholesterol (6) and 24-isopropenyl-25-methylcholesterol (7), and 24-isopropenyl-22-dehydrocholesterol (8).  相似文献   

8.
In search for bioactive compounds from Sabal species, sablacaurin A [25-ethyl,23-methyl-19-nor-24-methylene-3,4-seco-4(28)-lanosten-10,3-olide] and sablacaurin B [24-ethyl,24-methyl-19-nor-3,4-seco-4(28),25(26)-lanostadiene-10,3-olide], the first 19-nor lanostane derivatives of the 3,4-seco type with a spiro element, have been isolated from the leaves of Sabal causiarum and Sabal blackburniana respectively, together with the known squalene (S. blackburniana) and ss-sitosterol (S. causiarum). From leaves of Sabal peregrina, the known triterpenes 3-oxo-24-methylenecycloartane and 24-methylcycloart-25(26)-en-3-one were isolated. The structures of these compounds were established from spectroscopic studies.  相似文献   

9.
A series of analogues of cholesterol, each having a primary amine attached to a shortened side chain, were tested for their effects on cytochrome P-450scc from several different sources. Reconstituted enzyme systems using disrupted mitochondria from bovine adrenal and placenta, adult human adrenal and placenta, neonatal human adrenal, and rat adrenal and testis were used to assay for inhibitory effects on the side chain cleavage of cholesterol to pregnenolone. Two of the derivatives tested, 22-amino-23,24-bisnor-5-cholen-3 beta-ol and 23-amino-24-nor-5-cholen-3 beta-ol, were found to be potent inhibitors of this reaction; the derivatives in which the amine was attached closer to or further from the steroid ring, (20 R and S)-20-amino-5-pregnen-3 beta-ol and 24-amino-5-cholen-3 beta-ol, were much weaker inhibitors. In addition, spectral studies with rat adrenal mitochondria and a soluble preparation of human placental cytochrome P-450scc showed that binding of the 22-amine derivative to the enzyme produces difference spectra characteristic of nitrogen bonding to the heme; this indicates that the heme is positioned close to C-22 in the steroid-enzyme complex. These findings on the relative effectiveness of the amino-steroid inhibitors and the type of complex formed are similar to results obtained with purified bovine adrenocortical cytochrome P-450scc. This establishes that the proximity of the substrate binding site and the heme-iron catalytic site is a feature common to the enzyme from several sources and is therefore likely to be a necessary property of the active site structure.  相似文献   

10.
1. The echinoderms Asterias rubens and Solaster papposus (Class Asteroidea) metabolize injected [4(-14)C]cholest-5-en-3beta-ol to produce labelled 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 2. Conversion of 5alpha-[4(-14)C]cholestan-3beta-ol into 5alpha-cholest-7-en-3beta-ol was demonstrated in A. Rubens. 3. Incubations of A. rubens with [4(-14)C]cholest-4-en-3-one resulted in the production of labelled 5alpha-cholestan-3-one, 5alpha-cholestan-3beta-ol and 5alpha-cholest-7-en-3beta-ol. 4. [4(-14)C]Sitosterol was metabolized by A. rubens to give 5alpha-stigmastan-3beta-ol and 5alpha-stigmast-7-en-3beta-ol. 5. The significance of these results in relation to the presence of alpha7 sterols in starfish is discussed.  相似文献   

11.
Six nitrogen-, sulfur- and cyclopropane-containing derivatives of cholestanol were examined as inhibitors of growth and sterol biosynthesis in the trypanosomatid protozoan Crithidia fasciculata. The concentrations of inhibitors in the culture medium required for 50% inhibition of growth were 0.32 microM for 24-thia-5 alpha,20 xi-cholestan-3 beta-ol (2), 0.009 microM for 24-methyl-24-aza-5 alpha,20 xi-cholestan-3 beta-ol (3), 0.95 microM for (20,21),(24,-25)-bis-(methylene)-5 alpha,20 xi-cholestan-3 beta-ol (4), 0.13 microM for 22-aza-5 alpha,20 xi-cholestan-3 beta-ol (5), and 0.3 microM for 23-azacholestan-3-ol (7). 23-Thia-5 alpha-cholestan-3 beta-ol (6) had no effect on protozoan growth at concentrations as high as 20 microM. Ergosterol was the major sterol observed in untreated C. fasciculata, but significant amounts of ergost-7-en-3 beta-ol, ergosta-7,24(28)-dien-3 beta-ol, ergosta-5,7,22,24(28)-tetraen-e beta-ol, cholesta-8,24-dien-3 beta-ol, and, in an unusual finding, 14 alpha-methyl-cholesta-8,24-dien-3 beta-ol were also present. When C. fasciculata was cultured in the presence of compounds 2 and 3, ergosterol synthesis was suppressed, and the principal sterol observed was cholesta-5,7,24-trien-3 beta-ol, a sterol which is not observed in untreated cultures. The presence of this trienol strongly suggests that 2 and 3 specifically inhibit the S-adenosylmethionine:sterol C-24 methyltransferase but do not interfere with the normal enzymatic processing of the sterol nucleus. When C. fasciculata was cultured in the presence of compounds 5 and 7, the levels of ergosterol and ergost-7-en-3 beta-ol were suppressed, but the amounts of the presumed immediate precursors of these sterols, ergosta-5,7,22,24(28)-tetraen-3 beta-ol and ergosta-7,24-(28)-dien-3 beta-ol, respectively, were correspondingly increased. These findings suggest that 5 and 7 specifically inhibit the reduction of the delta 24(28) side chain double bond. When C. fasciculata was cultured in the presence of compound 4, ergosterol synthesis was suppressed, but the sterol distribution in these cells was complex and not easily interpreted. Compound 6 had no significant effect on sterol synthesis in C. fasciculata.  相似文献   

12.
Biosynthesis of cholestanol: 5-alpha-cholestan-3-one reductase of rat liver   总被引:4,自引:0,他引:4  
The 3-beta-hydroxysteroid dehydrogenase of rat liver which catalyzes the conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol is localized mainly in the microsomal fraction. The enzyme required NADPH as hydrogen donor and differed from the known 3-beta-hydroxysteroid dehydrogenases of the C(19) series in being inactive in the presence of NADH. The microsomal preparations did not reduce the 3-keto groups of cholest-4-en-3-one, cholest-5-en-3-one, or 5beta-cholestan-3-one to the corresponding 3beta-hydroxy compounds. The conversion of 5alpha-cholestan-3-one to 5alpha-cholestan-3beta-ol was only slightly inhibited by the reaction product or by other monohydroxy steroids, but a strong inhibitory effect was noted with cholest-5-en-3-one, 5alpha-cholestane-3beta, 7alpha-diol and 5alpha-cholestan-7-on-3beta-ol. The microsomes, but not high speed supernatant solution, catalyzed the reverse of the cholestanone reductase reaction, namely the conversion of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3-one in the presence of oxygen and an NADP-generating system. The action of the microsomal preparations upon 5alpha-cholestan-3-one produced 5alpha-cholestan-3alpha-ol in addition to the 3beta-epimer. The 3-alpha-hydroxysteroid dehydrogenase involved functioned with either NADH or NADPH as hydrogen donor. The ratio of 5alpha-cholestan-3beta-ol to 5alpha-cholestan-3alpha-ol formed from 5alpha-cholestan-3-one was approximately 10:1 and was independent of the sex of the animal from which the microsomes were prepared.  相似文献   

13.
Human promyelocytic leukemia cells (HL-60 cells) incubated with (24R)-hydroxy[26,27-methyl-3H]calcidiol (0.2 microCi) or non-radioactive (24R)-hydroxycalcidiol (370 micrograms) produced significant quantities of two new vitamin D3 (calciol) metabolites. The metabolites were isolated from HL-60 cell culture media by methanol/chloroform extraction and a series of chromatographic procedures. The two new metabolites were identified as (5Z)- and (5E)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol by HPLC analysis, ultraviolet absorption spectrophotometry, mass spectrometry and Fourier-transform infrared spectrophotometry. According to the isolation and purification procedures, the total amounts of 3.04 micrograms (5Z)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol (lambda max = 310 nm, epsilon = 17070 M-1 cm-1) and 8.89 micrograms (5E)-(24R)-19-nor-10-oxo-24-hydroxycalcidiol (lambda max = 312 nm, e = 24,500 M-1 cm-1) were calculated, assuming an Mr of 418. The activity of 19-nor-10-oxo-(24R)-hydroxycalcidiol to promote HL-60 cell differentiation was higher than the activity of the precursor (24R)-hydroxycalcidiol suggesting a possible biological action of this metabolite in HL-60 cells.  相似文献   

14.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R,25S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-4-ene-3beta,6beta,8,15a,16beta,26-hexaol and (20R,24R,25S,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-26,27-di-nor-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-5alpha-cholestan-3beta,4beta,6beta,8,15alpha,24-hexaol, were isolated from the two starfish species. (20R,24S)-Salpha-Cholestan-3beta,6beta,15alpha,24-tetraol and (20R,24S)-5alpha-cholestan-3beta,6beta,8,15alpha,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

15.
Zhang Y  Li XM  Proksch P  Wang BG 《Steroids》2007,72(9-10):723-727
Ergosterimide (1), a natural Diels-Alder adduct of ergosteroid and maleimide, was characterized from the culture extract of Aspergillus niger EN-13, an endophytic fungus isolated from the marine brown alga Colpomenia sinuosa. In addition, four known steroids including (22E,24R)-ergosta-5,7,22-trien-3beta-ol (2), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (3), (22E,24R)-5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol (4), and (22E,24R)-ergosta-7,22-dien-3beta,5alpha,6beta-triol (5) were also isolated and identified. The structures of these compounds were elucidated by extensive analysis of 1D and 2D NMR and IR spectra and MS data. The plausible biosynthetic pathway of 1 was also discussed. To the best of our knowledge, 1 is the first natural Diels-Alder adduct of steroid and maleimide reported so far.  相似文献   

16.
B Dayal  G S Tint  G Salen 《Steroids》1979,34(5):581-588
A convenient procedure for the synthesis of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12alpha,26-tetrol (25R and 25S) starting from 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol was developed. Dehydration of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha, 25-tetrol with glacial acetic acid and acetic anhydride yielded a mixture of 24-nor-5 beta-cholest-23-ene-3 alpha,7 alpha,12 alpha-triol and the corresponding delta 25 compound. Hydroboration and oxidation of the mixture of unsaturated nor-triols resulted in the formation of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrols (23R and 23S) and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrols (25R and 25S). In addition, smaller amounts of 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,22 xi-tetrol and 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol were also obtained. The C26 bile alcohols epimeric at C-23 and C-25 were resolved by analytical and preparative TLC and characterized by gas-liquid chromatography and mass spectrometry. Provisional assignment of the configurations of the C-23 and C-25 hydroxyl groups were made on the basis of molecular rotation differences. These C26 alcohols will be used to test the stereospecificity of the hepatic enzymes that promote oxidation of the cholesterol side chain.  相似文献   

17.
A series of analogues of cholesterol, each having a shortened side chain and a primary amine group, were prepared and tested for their effects on bovine adrenocortical cholesterol side chain cleavage cytochrome P-450 (P-450scc). A previous study had shown that one derivative, 22-amino-23,24-bisnor-5-cholen-3 beta-ol, is a potent competitive inhibitor of the enzyme and forms a complex in which the steroid ring binds to the cholesterol site and the side chain amine forms a bond with the heme iron (Sheets, J. J., and Vickery, L. E. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5773-5777). In the studies reported here, the 23-amine derivative, 23-amino-24-nor-5-cholen-3 beta-ol, was found to be an equally potent inhibitor and to be competitive with respect to cholesterol (Ki = 38 nM). Binding of the 23-amine to P-450scc also caused formation of a low spin complex with an absorption maximum at 422 nm, indicative of a nitrogen-donor ligand. Other derivatives in which the side chain amine was linked closer to the steroid, 17 beta-amino-5-androsten-3 beta-ol and (20 R + S)-20-amino-5-pregnen-3 beta-ol, were found to be only very weak inhibitors (I50 greater than 100 microM) and did not produce the 422 nm spectral form when bound. Derivatives in which the amine was attached a greater distance from the steroid ring, 24-amino-5-cholen-3 beta-ol and 25-amino-26,27-bisnor-5-cholesten-3 beta-ol, caused a progressive decrease in inhibitory potency and a failure to produce the 422 nm form on binding. The dependence of the type of interaction of these amino-steroids with P-450scc upon the amine position establishes that the steroid binding site and the heme catalytic site of the enzyme are fixed within a specific distance of one another. The heme appears to be located sufficiently close to the position that the side chain of cholesterol would occupy to allow for direct attack of an iron-bound oxidant to occur during hydroxylation and side chain cleavage.  相似文献   

18.
The sterols of the echinoderm Asterias rubens   总被引:7,自引:5,他引:2  
1. Twenty-two sterols were identified in the starfish Asterias rubens (Phylum, Echinodermata; Class, Asteroidea). 2. The major 4-demethyl sterols had a Delta(7) bond and the C(27) compound 5alpha-cholest-7-en-3beta-ol predominated over other mono- and di-unsaturated sterols belonging to the C(26), C(27), C(28) and C(29) series. 3. Small amounts of cholest-5-en-3beta-ol and 5alpha-cholestan-3beta-ol were also present. 4. The minor sterols identified all contained either one or two methyl groups at C-4 and are considered to be potential biosynthetic precursors of 5alpha-cholest-7-en-3beta-ol. 5. Three sterols possessing a 9beta,19-cyclopropane ring were also isolated and were probably derived by the starfish from a dietary source.  相似文献   

19.
Giner JL  Gunasekera SP  Pomponi SA 《Steroids》1999,64(12):820-824
The marine sponge Petrosia weinbergi was found to contain isofucosterol and clionasterol as its major sterols. The rare cyclopropyl sterol (24S,28S)-24,28-methylenestigmast-5-en-3beta-ol, previously detected as only 0.07% of the total sterols of a pelagophytic alga Pulvinaria sp., made up 6.6% of the total sterols. These sterols are believed to be the biosynthetic precursors of the antiviral orthoesterols and weinbersterols found in the same sponge. Based on the side chains of the isolated sterols, the absolute configurations of the antiviral steroid side chains are assigned to be (24R,28S)- for orthoesterol B, (24R)- for orthoesterol C, and (24S,28S)- for weinbersterols A and B.  相似文献   

20.
The vitamin D3 metabolite obtained from the incubation of 3-[(cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO)-solubilized chick kidney mitochondria with 25-hydroxyvitamin D3 (25-OH-D3) was identified to be 5(E)-19-nor-10-oxo-25-hydroxyvitamin D3 (5(E)-19-nor). The production of 19-nor was dependent on time and on protein concentration, but was not dependent on the pH of the incubation. 19-Nor was not formed in the absence of protein or when protein had been heat-treated following detergent solubilization. 19-Nor was not further metabolized to any other product upon incubation with the CHAPSO-solubilized proteins. No 19-nor-10-oxo derivative of 1,25(OH)2D3 was formed when 1,25(OH)2D3 was used as substrate in the incubation. Kinetic analysis showed a substrate saturation with an apparent Vmax of about 4.1 pmol/min.mg and S0.5 of approximately 1.3 x 10(-6) M. The production of 19-nor was not restricted to the CHAPSO-soluble protein fraction of kidney mitochondria but was also found in both the CHAPSO-soluble and -insoluble fractions of chick liver mitochondria and CHAPSO-treated bovine serum albumin (BSA). 19-Nor production by detergent-treated BSA also showed saturation kinetics with a similar S0.5 and an apparent Vmax which was about 5-fold higher than that obtained with CHAPSO-solubilized mitochondria. The evidence suggests that the formation of 19-nor is not mediated by a traditional enzyme, but does require protein. A mechanism for the conversion of 25-OH-E3 to 19-nor is proposed, in which the naturally-occurring 5(Z)-25-OH-D3 substrate binds to protein, isomerizes to 5(E)-25-OH-D3 and is oxidized by hydrogen peroxide to 5(E)-19-nor via a dioxetane intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号