首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
The "push-pull" effect denotes the reduced tolerance to +Gz (hypergravity) when +Gz stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative Gz. Previous studies have implicated autonomic reflexes as a mechanism contributing to the push-pull effect. The purpose of this study was to test the hypothesis that nonautonomic mechanisms can cause a push-pull effect, by using eye-level blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30 degrees head-up tilt) and push-pull (30 s of 30 degrees head-up tilt immediately preceded by 10 s of -15 degrees headdown tilt) gravitational stress after administration of hexamethonium (10 mg/kg) to inhibit autonomic ganglionic neurotransmission in four dogs. The animals were chronically instrumented with arterial and venous catheters, an ascending aortic blood flow transducer, ventricular pacing electrodes, and atrioventicular block. The animals were paced at 75 beats/min throughout the experiment. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. After the onset of head-up tilt, the magnitude of the fall in eye-level blood pressure from baseline was -27.6 +/- 2.3 and -37.9 +/- 2.7 mmHg for the control and push-pull trials, respectively (P < 0.05). Cardiac output fell similarly in both conditions. Thus a push-pull effect attributable to a rise in total vascular conductance occurs when autonomic function is inhibited.  相似文献   

2.
The "push-pull" effect denotes the reduced tolerance to +G(z) (hypergravity) when +G(z) stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative G(z). The purpose of this study was to test the hypothesis that an exaggerated, myogenically mediated rise in leg vascular conductance contributes to the push-pull effect, using heart level arterial blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30 degrees head-up tilt) and push-pull (30 s of 30 degrees head-up tilt immediately preceded by 10 s of -15 degrees head-down tilt) gravitational stress after administration of hexamethonium (5 mg/kg) to inhibit autonomic ganglionic neurotransmission in seven dogs. Cardiac output or thigh level arterial pressure (myogenic stimulus) was maintained constant by computer-controlled ventricular pacing. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. Following the onset of head-up tilt, the magnitude of the fall in heart level arterial pressure from baseline was -11.6 +/- 2.9 and -17.1 +/- 2.2 mmHg for the control and push-pull trials, respectively (P < 0.05), when cardiac output was maintained constant. Over 40% of the exaggerated fall in heart level arterial pressure was attributable to an exaggerated rise in hindlimb vascular conductance (P < 0.05). Maintaining thigh level arterial pressure constant abolished the exaggerated rise in hindlimb blood flow. Thus a push-pull effect largely attributable to a myogenically induced rise in leg vascular conductance occurs when autonomic function is inhibited.  相似文献   

3.
Hemodynamic consequences of rapid changes in posture in humans.   总被引:1,自引:0,他引:1  
Tolerance to +G(z) gravitational stress is reduced when +G(z) stress is preceded by exposure to hypogravity (fraction, 0, or negative G(z)). For example, there is an exaggerated fall in eye-level arterial pressure (ELAP) early on during +G(z) stress (head-up tilt; HUT) when this stress is immediately preceded by -G(z) stress (head-down tilt; HDT). The aims of the present study were to characterize the hemodynamic consequences of brief HDT on subsequent HUT and to test the hypothesis that an elevation in leg vascular conductance induced by -G(z) stress contributes to the exaggerated fall in ELAP. Young healthy subjects (n = 3 men and 4 women) were subjected to 30 s of 30 degrees HUT from a horizontal position and to 30 s of 30 degrees HUT when HUT was immediately preceded by 20 s of -15 degrees HDT. Four bouts of HDT-HUT were alternated between five bouts of HUT in a counterbalanced designed to minimize possible time effects of repeated exposure to gravitational stress. One minute was allowed for recovery between tilts. Brief exposure to HDT elicited an exaggerated fall in ELAP during the first seconds of the subsequent HUT (-17.9 +/- 1.4 mmHg) compared with HUT alone (-12.4 +/- 1.2 mmHg, P <0.05) despite a greater rise in stroke volume (Doppler ultrasound) and cardiac output over this brief time period in the HDT-HUT trials compared with the HUT trials (thereafter stroke volume fell under both conditions). The greater fall in ELAP was associated with an exaggerated increase in leg blood flow (femoral artery Doppler ultrasound) and was therefore largely (70%) attributable to an exaggerated rise in estimated leg vascular conductance, confirming our hypotheses. Thus brief exposure to -G(z) stress leads to an exaggerated fall in ELAP during subsequent HUT, owing to an exaggerated increase in estimated leg vascular conductance.  相似文献   

4.
Brief exposure to -G(z) ("push") reduces eye-level blood pressure (elbp) during subsequent exposure to +G(z) ("pull"). This is called the "push-pull effect." To evaluate the influence of gender and the axis of rotation (pitch vs. roll) on the push-pull effect, 10 isoflurane-anesthetized male and 10 female Sprague-Dawley rats were restrained supine on a heated tilt board. Rats were subjected to two G profiles: a control profile consisting of rotation from 0 G(z) to 90 degrees head-up tilt (+1 G(z)) for 10 s and a push-pull profile consisting of rotation from 0 G(z) to 90 degrees head-down tilt (-1 G(z)) for 2 s immediately preceding 10 s of +1 G(z) stress. A total of 16 tilts consisting of equal numbers of control and push-pull trials and equal numbers of pitch and roll rotations were imposed by using a counterbalanced design. Gender exerted a significant effect on baseline (0 G(z)) ELBP (pressure was approximately 4 mmHg higher in females). In males and females, ELBP rose to a similar extent ( approximately 8 mmHg) during push, fell to a similar extent (approximately 18 mmHg) during control +G(z) stress, and fell to a similar extent (approximately 22 mmHg) during push-pull +G(z) stress. Altering the axis of rotation between the x-axis (roll) and the y-axis (pitch) did not influence the results. Thus males and females exhibit a push-pull effect; however, gender and axis of rotation do not appear to influence the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

5.
Tolerance to +G(z) stress is reduced by preceding exposure to -G(z) (push-pull effect). The mechanism(s) responsible for this effect are not fully understood, although the arterial baroreceptor reflexes have been implicated. We investigated the integrative response of the autonomic nervous system by studying responses to gravitational stress before and after autonomic function was inhibited by hexamethonium in 10 isoflurane-anesthetized male and female Sprague-Dawley rats. Animals were restrained supine and subjected to two rotations imposed about the x-axis: 1) a control G profile consisting of rotation from 0 G(z) (+1 G(y)) to 90 degrees head-up tilt (+1 G(z)) for 10 s and 2) a push-pull G profile consisting of rotation from 0 G(z) to 90 degrees head-down tilt (-1 G(z)) for 2 s immediately preceding 10 s of +1 G(z) stress. Eight G profiles consisting of equal numbers of control and push-pull trials were imposed by using a counterbalanced design. We found that hexamethonium lowered baseline arterial pressure and abolished the push-pull effect. The lack of a push-pull effect after autonomic blockade persisted when arterial pressure was restored to baseline levels by phenylephrine infusion. Lowering baseline arterial pressure by sodium nitroprusside infusion or by hemorrhage when autonomic function was intact also abolished the push-pull effect. We conclude that intact autonomic function and a normal baseline arterial pressure are needed for expression of the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

6.
Two objective methods and one subjective method for measuring +Gz tolerance (inertial vector in a head-to-foot direction) were compared on the human centrifuge. Direct eye-level blood pressure (Pa), blood flow velocity in the superficial temporal artery (Qta), and subjective visual symptoms were used to determine tolerance to rapid onset acceleration (1 G/s) on the USAFSAM human centrifuge. Seven "relaxed" subjects with extensive centrifuge experience were exposed to gradually increasing +Gz plateaus until the subject reported 100% loss of peripheral centrifuge gondola lights (PLL) and 50% loss of central light (CLD); viz., blackout. Zero forward Qta occurred 6 s (range 4-9 s) before subjective blackout and when mean eye-level blood pressure had reached 20 +/- 1 mmHg (SE). The results of this study indicate that flow changes in the superficial temporal artery reflect flow changes in the retinal circulation during +Gz stress.  相似文献   

7.
To examine whether changes in autonomic activity have an effect on the latency of the vagally mediated cardiac baroreflex response in humans, we investigated the effects of neck suction fluctuating sinusoidally at 0.2 Hz on R-R intervals (known to be mediated mainly by vagal activity) in the supine position, during 15 degrees head-down tilt and 60 degrees head-up tilt, and during vagotonic (2 microg/kg) and vagolytic (10 microg/kg) doses of atropine while the subjects breathed at 0.25 Hz. The phase shift between fluctuations in neck chamber pressure and in R-R interval was calculated by complex transfer function analysis and was used as a measure of the time delay between carotid baroreceptor stimulation and cardiac effector response. Cardiac baroreflex responsiveness increased significantly during low-dose atropine and decreased during head-up tilt or 10 microg/kg atropine. With increasing tilt angle, the time delay between cyclic baroreceptor stimulation and oscillations in R-R interval increased from 0.32 +/- 0.27 s (head down), to 0.59 +/- 0.25 s (supine position, P < 0.05 vs. head down), and to 0.86 +/- 0.27 s (head up, P < 0.01 vs. supine). Low-dose atropine had a similar effect to head-down tilt on baroreflex latency, whereas 10 microg/kg atropine increased the time delay markedly to 1.24 +/- 0.30 s. Our results demonstrate that changes in autonomic activity, generated either by gravitational stimulus or by atropine, not only affect baroreflex responsiveness but also have a major influence on the latency of the vagally mediated carotid baroreceptor-heart rate reflex. The prolonged baroreflex latency during decreased parasympathetic function may contribute to an unstable regulation of heart rate in patients with cardiac disease.  相似文献   

8.
The purpose of this study was to evaluate the role of baroreceptor control on the postexercise threshold for forearm cutaneous vasodilation. On four separate days, six subjects (1 woman) were randomly exposed to 65 degrees head-up tilt and to 15 degrees head-down tilt during a No-Exercise and Exercise treatment protocol. Under each condition, a whole body water-perfused suit was used to regulate mean skin temperature (T(sk)) in the following sequence: 1) cooling until the threshold for vasoconstriction was evident; 2) heating ( approximately 7.0 degrees C/h) until vasodilation occurred; and 3) cooling until esophageal temperature (T(es)) and (T(sk)) returned to baseline values. The Exercise treatment consisted of 15 min of cycling exercise at 70% maximal O(2) uptake, followed by 15 min of recovery in the head-up tilt position. The No-Exercise treatment consisted of 30 min resting in the head-up tilt position. After the treatment protocols, subjects were returned to their pretreatment condition, then cooled and warmed again consecutively. The calculated T(es) threshold for cutaneous vasodilation increased 0.24 degrees C postexercise during head-up tilt (P < 0.05), whereas no difference was measured during head-down tilt. In contrast, sequential measurements without exercise demonstrate a time-dependent decrease for head-up tilt (0.17 degrees C) and no difference for head-down tilt. Pretreatment thresholds were significantly lower during head-down tilt compared with head-up tilt. We have shown that manipulating postexercise venous pooling by means of head-down tilt, in an effort to reverse its impact on baroreceptor unloading, resulted in a relative lowering of the resting postexercise elevation in the T(es) for forearm cutaneous vasodilation.  相似文献   

9.
Otolith organs have been shown to activate the sympathetic nervous system in the prone position by head-down rotation (HDR) in humans. To date, otolithic stimulation by HDR has not been comprehensively studied in the upright posture. The purpose of the present study was to determine whether otolithic stimulation increases muscle sympathetic nerve activity (MSNA) in the upright posture. It was hypothesized that stimulation of the otolith organs would increase MSNA in the upright posture, despite increased baseline sympathetic activation due to unloading of the baroreceptors. MSNA, arterial blood pressure, heart rate, and degree of head rotation were measured during HDR in 18 volunteers (23 +/- 1 yr) in different postures. Study 1 (n = 11) examined HDR in the prone and sitting positions and study 2 (n = 7) examined HDR in the prone and 60 degrees head-up tilt positions. Baseline MSNA was 8 +/- 4, 15 +/- 4, and 33 +/- 2 bursts/min for prone, sitting, and head-up tilt, respectively. HDR significantly increased MSNA in the prone (Delta4 +/- 1 and Delta105 +/- 37% for burst frequency and total activity, respectively), sitting (Delta5 +/- 1 and Delta43 +/- 12%), and head-up tilt (Delta7 +/- 1 and Delta110 +/- 41%; P < 0.05). Sensitivity of the vestibulosympathetic reflex (%DeltaMSNA/DeltaHDR; degree of head rotation) was significantly greater in the sitting and head-up tilt than prone position (prone = 74 +/- 22; sitting = 109 +/- 30; head-up tilt = 276 +/- 103; P < 0.05). These data indicate that stimulation of the otolith organs can mediate increases in MSNA in the upright posture and suggest a greater sensitivity of the vestibulosympathetic reflex in the upright posture in humans.  相似文献   

10.
Effects of 18 days of bed rest on leg and arm venous properties.   总被引:3,自引:0,他引:3  
Venous function may be altered by bed rest deconditioning. Yet the contribution of altered venous compliance to the orthostatic intolerance observed after bed rest is uncertain. The purpose of this study was to assess the effect of 18 days of bed rest on leg and arm (respectively large and small change in gravitational gradients and use patterns) venous properties. We hypothesized that the magnitude of these venous changes would be related to orthostatic intolerance. Eleven healthy subjects (10 men, 1 woman) participated in the study. Before (pre) and after (post) 18 days of 6 degrees head-down tilt bed rest, strain gauge venous occlusion plethysmography was used to assess limb venous vascular characteristics. Leg venous compliance was significantly decreased after bed rest (pre: 0.048 +/- 0.007 ml x 100 ml(-1) x mmHg(-1), post: 0.033 +/- 0.007 ml x 100 ml(-1) x mmHg(-1); P < 0.01), whereas arm compliance did not change. Leg venous flow resistance increased significantly after bed rest (pre: 1.73 +/- 1.08 mmHg x ml(-1) x 100 ml x min, post: 3.10 +/- 1.00 mmHg x ml(-1) x 100 ml x min; P < 0.05). Maximal lower body negative pressure tolerance, which was expressed as cumulative stress index (pressure x time), decreased in all subjects after bed rest (pre: 932 mmHg x min, post: 747 mmHg x min). The decrease in orthostatic tolerance was not related to changes in leg venous compliance. In conclusion, this study demonstrates that after bed rest, leg venous compliance is reduced and leg venous outflow resistance is enhanced. However, these changes are not related to measures of orthostatic tolerance; therefore, alterations in venous compliance do not to play a major role in orthostatic intolerance after 18 days of head-down tilt bed rest.  相似文献   

11.
To examine a hypothesis that change in regional blood flow due to decreased hydrostatic pressure gradient and redistribution of blood during reduced gravity (rG) is different between organs, changes in cerebrocortical blood flow (CBF) and blood flow in the temporal muscle (MBF) with exposure to rG were measured in anesthetized rats in head-up tilt and flat positions during parabolic flight. Carotid arterial pressure (CAP), jugular venous pressure (JVP), and abdominal aortic pressure were also measured simultaneously. In the head-up tilt group, CBF increased by 15 +/- 3% within 3 s of entry into rG and rapidly recovered during rG. MBF also increased, but the change was significantly greater than that of CBF. JVP increased by 1.8 +/- 0.5 mmHg, probably due to loss of hydrostatic pressure gradient, since the measuring point of JVP was 2-3 cm above the hydrostatic indifference point. CAP and abdominal aortic pressure increased by 16.7 +/- 2 and 7.7 +/- 2 mmHg, respectively, compared with the 1-G condition. Muscle vascular resistance [(CAP-JVP)/MBF] decreased on entry into rG, but no significant change was observed in cerebrocortical vascular resistance [(CAP-JVP)/CBF]. In the flat group, no significant change was observed in all the variables. The results indicate that arteriolar vasodilatation occurs in the temporal muscle but not in the cerebral cortex. Thus the blood flow control mechanism at the onset of rG is different between intra- and extracranial organs.  相似文献   

12.
Nine unanesthetized, chronically instrumented, female miniature swine (MS) (avg wt, 39.7 kg) were exposed to head-to-tail inertial load (+Gz) levels of +3, +5, and +7 Gz for 60 s, with and without anti-G-suit inflation. Venous flow (VF) was measured by an electromagnetic flow sensor around the inferior thoracic vena cava at the diaphragm. Central venous pressure (CVP), abdominal venous pressure (AVP), eye-level blood pressure (ELBP), and esophageal pressure (EP) were also measured before, during, and after +Gz. There was a progressive significant decrease from control of both ELBP (P less than 0.001) and VF (P less than 0.05) during the three +Gz exposures, both with and without G-suit inflation. Without G-suit inflation, most of the MS were unable to tolerate +5 and +7 Gz. Although VF was significantly (P less than 0.02) improved by G-suit inflation during +Gz there was no significant difference in VF between the three +Gz levels, with or without G-suit inflation. The MS does a spontaneous straining maneuver (cyclic Valsalva) during +Gz with G-suit support. Using EP as a trigger, the data were grouped as strain or no strain (relaxation). A continuous AVP-to-CVP gradient existed during G-suit inflation, which increased dramatically during no strain with increasing +Gz, and was associated with an increase in VF. Thus, the majority of VF occurred during relaxation between strains, even though relaxation time was shortened as +Gz increased. Although ELBP is obviously dependent on cardiac output and venous return, the progressive reduction in ELBP with increased +Gz loads was not significantly related to changes in VF at the diaphragm which was maintained, although at a reduced rate, by the AVP-to-CVP gradient during G-suit inflation.  相似文献   

13.
To test the hypothesis that systemic inhibition of nitric oxide (NO) synthase does not alter the regulation of sympathetic outflow during head-up tilt in humans, in eight healthy subjects NO synthase was blocked by intravenous infusion of NG-monomethyl-L-arginine (L-NMMA). Blood pressure, heart rate, cardiac output, total peripheral resistance (TPR), and muscle sympathetic nerve activity (MSNA) were recorded in the supine position and during 60 degrees head-up tilt. In the supine position, infusion of L-NMMA increased blood pressure, via increased TPR, and inhibited MSNA. However, the increase in MSNA evoked by head-up tilt during L-NMMA infusion (change in burst rate: 24 +/- 4 bursts/min; change in total activity: 209 +/- 36 U/min) was similar to that during head-up tilt without L-NMMA (change in burst rate: 23 +/- 4 bursts/min; change in total activity: 251 +/- 52 U/min, n = 6, all P > 0.05). Moreover, changes in TPR and heart rate during head-up tilt were virtually identical between the two conditions. These results suggest that systemic inhibition of NO synthase with L-NMMA does not affect the regulation of sympathetic outflow and vascular resistance during head-up tilt in humans.  相似文献   

14.
The ventricular response to passive heat stress has predominantly been studied in the supine position. It is presently unclear how acute changes in venous return influence ventricular function during heat stress. To address this question, left ventricular (LV) systolic and diastolic function were studied in 17 healthy men (24.3 ± 4.0 yr; mean ± SD), using two-dimensional transthoracic echocardiography with Doppler ultrasound, during tilt-table positioning (supine, 30° head-up tilt, and 30° head-down tilt), under normothermic and passive heat stress (core temperature 0.8 ± 0.1°C above baseline) conditions. The supine heat stress LV volumetric and functional response was consistent with previous reports. Combining head-up tilt with heat stress reduced end-diastolic (25.2 ± 4.1%) and end-systolic (65.4 ± 10.5%) volume from baseline, whereas heart rate (37.7 ± 2.0%), ejection fraction (9.4 ± 2.4%), and LV elastance (37.7 ± 3.6%) increased, and stroke volume (-28.6 ± 9.4%) and early diastolic inflow (-17.5 ± 6.5%) and annular tissue (-35.6 ± 7.0%) velocities were reduced. Combining head-down tilt with heat stress restored end-diastolic volume, whereas LV elastance (16.8 ± 3.2%), ejection fraction (7.2 ± 2.1%), and systolic annular tissue velocities (22.4 ± 5.0%) remained elevated above baseline, and end-systolic volume was reduced (-15.3 ± 3.9%). Stroke volume and the early and late diastolic inflow and annular tissue velocities were unchanged from baseline. This investigation extends previous work by demonstrating increased LV systolic function with heat stress, under varied levels of venous return, and highlights the preload dependency of early diastolic function during passive heat stress.  相似文献   

15.
The skeletal muscle pump is thought to be at least partially responsible for the immediate muscle hyperemia seen with exercise. We hypothesized that increases in venous pressure within the muscle would enhance the effectiveness of the muscle pump and yield greater postcontraction hyperemia. In nine anesthetized beagle dogs, arterial inflow and venous outflow of a single hindlimb were measured with ultrasonic transit-time flow probes in response to 1-s tetanic contractions evoked by electrical stimulation of the sciatic nerve. Venous pressure in the hindlimb was manipulated by tilting the upright dogs to a 30 degrees angle in the head-up or head-down positions. The volume of venous blood expelled during contractions was 2.2 +/- 0.2, 1.6 +/- 0.2, and 1.4 +/- 0.2 ml with the head-up, horizontal, and head-down positions, respectively. Although altering hindlimb venous pressure influenced venous expulsion during contraction, the increase in arterial inflow was similar regardless of position. Moreover, the volume of blood expelled was a small fraction of the cumulative arterial volume after the contraction. These results suggest that the muscle pump is not a major contributor to the hyperemic response to skeletal muscle contraction.  相似文献   

16.
Leg intravenous pressure during head-up tilt   总被引:1,自引:0,他引:1  
Leg vascular resistance is calculated as the arterial-venous pressure gradient divided by blood flow. During orthostatic challenges it is assumed that the hydrostatic pressure contributes equally to leg arterial, as well as to leg venous pressure. Because of venous valves, one may question whether, during orthostatic challenges, a continuous hydrostatic column is formed and if leg venous pressure is equal to the hydrostatic pressure. The purpose of this study was, therefore, to measure intravenous pressure in the great saphenous vein of 12 healthy individuals during 30 degrees and 70 degrees head-up tilt and compare this with the calculated hydrostatic pressure. The height difference between the heart and the right medial malleolus level represented the hydrostatic column. The results demonstrate that there were no differences between the measured intravenous pressure and the calculated hydrostatic pressure during 30 degrees (47.2 +/- 1.0 and 46.9 +/- 1.5 mmHg, respectively) and 70 degrees head-up tilt (83.9 +/- 0.9 and 85.1 +/- 1.2 mmHg, respectively). Steady-state levels of intravenous pressure were reached after 95 +/- 12 s during 30 degrees and 161 +/- 15 s during 70 degrees head-up tilt. In conclusion, the measured leg venous pressure is similar to the calculated hydrostatic pressure during orthostatic challenges. Therefore, the assumption that hydrostatic pressure contributes equally to leg arterial as well as to leg venous pressure during orthostatic challenges can be made.  相似文献   

17.
Complete ganglion blockade alters dynamic cerebral autoregulation, suggesting links between systemic autonomic traffic and regulation of cerebral blood flow velocity. We tested the hypothesis that acute head-down tilt, a physiological maneuver that decreases systemic sympathetic activity, would similarly disrupt normal dynamic cerebral autoregulation. We studied 10 healthy young subjects (5 men and 5 women; age 21 +/- 0.88 yr, height 169 +/- 3.1 cm, and weight 76 +/- 6.1 kg). ECG, beat-by-beat arterial pressure, respiratory rate, end-tidal CO2 concentration, and middle cerebral blood flow velocity were recorded continuously while subjects breathed to a metronome. We recorded data during 5-min periods and averaged responses from three Valsalva maneuvers with subjects in both the supine and -10 degrees head-down tilt positions (randomized). Controlled-breathing data were analyzed in the frequency domain with power spectral analysis. The magnitude of input-output relations were determined with cross-spectral techniques. Head-down tilt significantly reduced Valsalva phase IV systolic pressure overshoot from 36 +/- 4.0 (supine position) to 25 +/- 4.0 mmHg (head down) (P = 0.03). Systolic arterial pressure spectral power at the low frequency decreased from 5.7 +/- 1.6 (supine) to 4.4 +/- 1.6 mmHg2 (head down) (P = 0.02), and mean arterial pressure spectral power at the low frequency decreased from 3.3 +/- 0.79 (supine) to 2.0 +/- 0.38 mmHg2 (head down) (P = 0.05). Head-down tilt did not affect cerebral blood flow velocity or the transfer function magnitude and phase angle between arterial pressure and cerebral blood flow velocity. Our results show that in healthy humans, mild physiological manipulation of autonomic activity with acute head-down tilt has no effect on the ability of the cerebral vasculature to regulate flow velocity.  相似文献   

18.
Measurements of right ventricular pressure in miniature swine were made at +Gz levels from +1 through +9 Gz. Polyethylene catheters were chronically placed in the cranial vena cava of five 2-yr-old female miniature swine (35-50 kg). The catheters were large enough to allow the introduction of a Millar pressure transducer into the venous system for placement in the right heart. The animals were fitted with an abdominal anti-G suit, restrained in a fiberglass couch, and exposed to the various +Gz levels on a centrifuge while fully conscious and unanesthetized. Right ventricular pressure and heart rate were measured during and for 2 min following 30-s exposures to each level of +Gz stress. The maximum right ventricular systolic pressure observed during +Gz was 200 Torr at +5 Gz with the maximum diastolic pressure being 88 Torr observed at +5 Gz. Mean heart rates were 200-210 beats/min at all levels of +Gz greater than or equal to +3 Gz when the animal remained stable. Mean maximum right ventricular pressures during +Gz stress were observed to increase through +5 Gz (85 Torr) and to decrease at higher levels of +Gz, indicating that through +5 Gz there is at least a partial compensation during acceleration stress. Decompensation in response to the stress began to occur during acceleration above +5 Gz with all animals decompensating during +9 Gz.  相似文献   

19.
The postulate that venous adaptation assists postural baroreflex regulation by shifting the hydrostatic indifference point (HIP) toward the heart was investigated in eight midazolam-sedated newborn piglets. Whole body head-up (+15, +30, and +45 degrees ) and head-down (-15 and -30 degrees ) tilt provided a physiological range of orthostatic strain. HIP for all positive tilts shifted toward the heart (P < 0.05), +45 degrees HIP shifted most [6.7 +/- 0.3, 5.9 +/- 0.5, and 3.6 +/- 0.3 (SE) cm caudal to right atrium on days 1, 3, and 6, respectively]. HIP for negative tilts (3.0 +/- 0.2 cm caudal to right atrium) did not shift with postnatal age. Euthanasia on day 6 caused 2.1 +/- 0.3-cm caudal displacement of HIP for positive and negative tilts (P < 0.05). HIP proximity to right atrium was not altered by alpha-, beta-adrenoceptor and cholinoceptor blockade on day 5. It is concluded that early HIP migration reflects enhancement of venous pressure control to head-up orthostatic strain. The effect is independent of baroreflex-mediated adrenoceptor and cholinoceptor mechanisms.  相似文献   

20.
The aim of this study was to quantitate the density of nerve terminals as well as their synaptic vesicle population in the adventitia of saphenous (SV and SA) and brachial veins and arteries (BV and BA) obtained from rats maintained in a horizontal control or a tilted position. Adult animals were kept individually in tube-like cages in a 45 degrees head-up position. After 2 wk, both tilted and control animals were anesthetized, and the whole body was perfused with fixative solution at physiological pressure. Vessels segments were then excised for electron microscopy and immunohistochemistry. The nerve terminal density (NTD) of SA was 8.20 +/- 1.46 nerve terminals/100 microm(2) cross section of adventitia and that of SV was 4.53 +/- 0.61 nerve terminals/100 microm(2) cross section of adventitia in control rats. Tilting caused a significant increase in NTD of both SA (70%) and SV (52%). The synaptic microvesicle density (SyVD) was larger in SA than SV in control rats (30.48 +/- 4.41 vs. 13.38 +/- 2.61 synaptic vesicles/10 terminal sections), but tilting resulted in more pronounced changes in SyVD of SV (95%) than SA (54%). No significant changes in NTD and SyVD of BA were found after tilt (-3.6% relative to 4.99 +/- 0.33 compared with 0.4% relative to 24.89 +/- 3.7, respectively). Whereas NTD of BV exhibited a tendency to increase (3.73 +/- 0.86 vs. 2.31 +/- 0.29 nerve terminals/100 microm(2) cross section of adventitia), SyVD did not change significantly (18.96 +/- 2.74 vs. 22.85 +/- 3.17 synaptic vesicles/10 terminal sections). A large number of nerve terminals of all vessels were tyrosine hydroxylase immunoreactive (containing norepinephrine). These findings support the hypothesis that long-term gravitational load causes adaptive morphological and functional remodeling of sympathetic innervation in blood vessels of the extremities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号