首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major proteoglycan of articular cartilage aggrecan is a substrate for ADAMTS4. RT-PCR analysis of human osteoarthritic (OA) synovial co-cultures using oligonucleotide primers designed to amplify across the exon 8/9 junction of human ADAMTS4 resulted in the amplification of two products, the expected product and a smaller product missing 161 bp from the 5' end of exon 9, the result of alternative splicing in which exon 8 joins to a cryptic 3' splice site within exon 9. The protein produced would be identical to human ADAMTS4 up to Arg(696), and would have a new C-terminal domain with no commonality with the ADAMTS4 spacer domain. Changes in the C-terminal domain of ADAMTS4 may alter its substrate specificity.  相似文献   

2.
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.  相似文献   

3.
4.
ADAMTS4 (aggrecanase-1), a secreted enzyme belonging to the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family, is considered to play a key role in the degradation of cartilage proteoglycan (aggrecan) in osteoarthritis and rheumatoid arthritis. To clone molecules that bind to ADAMTS4, we screened a human chondrocyte cDNA library by the yeast two-hybrid system using the ADAMTS4 spacer domain as bait and obtained cDNA clones derived from fibronectin. Interaction between ADAMTS4 and fibronectin was demonstrated by chemical cross-linking. A yeast two-hybrid assay and solid-phase binding assay using wild-type fibronectin and ADAMTS4 and their mutants demonstrated that the C-terminal domain of fibronectin is capable of binding to the C-terminal spacer domain of ADAMTS4. Wild-type ADAMTS4 was co-localized with fibronectin as determined by confocal microscopy on the cell surface of stable 293T transfectants expressing ADAMTS4, although ADAMTS4 deletion mutants, including Delta Sp (Delta Arg(693)-Lys(837), lacking the spacer domain), showed negligible localization. The aggrecanase activity of wild-type ADAMTS4 was dose-dependently inhibited by fibronectin (IC(50) = 110 nm), whereas no inhibition was observed with Delta Sp. The C-terminal 40-kDa fibronectin fragment also inhibited the activity of wild-type ADAMTS4 (IC(50) = 170 nm). These data demonstrate for the first time that the aggrecanase activity of ADAMTS4 is inhibited by fibronectin through interaction with their C-terminal domains and suggest that this extracellular regulation mechanism of ADAMTS4 activity may be important for the degradation of aggrecan in arthritic cartilage.  相似文献   

5.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.  相似文献   

6.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

7.
We have characterized ADAMTS7B, the authentic full-length protein product of the ADAMTS7 gene. ADAMTS7B has a domain organization similar to that of ADAMTS12, with a total of eight thrombospondin type 1 repeats in its ancillary domain. Of these, seven are arranged in two distinct clusters that are separated by a mucin domain. Unique to the ADAMTS family, ADAMTS7B is modified by attachment of the glycosaminoglycan chondroitin sulfate within the mucin domain, thus rendering it a proteoglycan. Glycosaminoglycan addition has potentially important implications for ADAMTS7B cellular localization and for substrate recognition. Although not an integral membrane protein, ADAMTS7B is retained near the cell surface of HEK293F cells via interactions involving both the ancillary domain and the prodomain. ADAMTS7B undergoes removal of the prodomain by a multistep furin-dependent mechanism. At least part of the final processing event, i.e. cleavage following Arg(220) (mouse sequence annotation), occurs at the cell surface. ADAMTS7B is an active metalloproteinase as shown by its ability to cleave alpha(2)-macroglobulin, but it does not cleave specific peptide bonds in versican and aggrecan attacked by ADAMTS proteases. Together with ADAMTS12, whose primary structure also predicts a mucin domain, ADAMTS7B constitutes a unique subgroup of the ADAMTS family.  相似文献   

8.
9.
Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.  相似文献   

10.
ADAMTS13 consists of a reprolysin-type metalloprotease domain followed by a disintegrin domain, a thrombospondin type 1 motif (TSP1), Cys-rich and spacer domains, seven more TSP1 motifs, and two CUB domains. ADAMTS13 limits platelet accumulation in microvascular thrombi by cleaving the Tyr1605-Met1606 bond in von Willebrand factor, and ADAMTS13 deficiency causes a lethal syndrome, thrombotic thrombocytopenic purpura. ADAMTS13 domains required for substrate recognition were localized by the characterization of recombinant deletion mutants. Constructs with C-terminal His6 and V5 epitopes were expressed by transient transfection of COS-7 cells or in a baculovirus system. No association with extracellular matrix or cell surface was detected for any ADAMTS13 variant by immunofluorescence microscopy or chemical modification. Both plasma and recombinant full-length ADAMTS13 cleaved von Willebrand factor subunits into two fragments of 176 kDa and 140 kDa. Recombinant ADAMTS13 was divalent metal ion-dependent and was inhibited by IgG from a patient with idiopathic thrombotic thrombocytopenic purpura. ADAMTS13 that was truncated after the metalloprotease domain, the disintegrin domain, the first TSP1 repeat, or the Cys-rich domain was not able to cleave von Willebrand factor, whereas addition of the spacer region restored protease activity. Therefore, the spacer region is necessary for normal ADAMTS13 activity toward von Willebrand factor, and the more C-terminal TSP1 and CUB domains are dispensable in vitro.  相似文献   

11.
ADAMTS13 limits platelet-rich thrombosis by cleaving von Willebrand factor at the Tyr(1605)-Met(1606) bond. Previous studies showed that ADAMTS13 truncated after spacer domain remains proteolytically active or hyperactive. However, the relative contribution of each domain within the proximal carboxyl terminus of ADAMTS13 in substrate recognition and specificity is not known. We showed that a metalloprotease domain alone was unable to cleave the Tyr-Met bond of glutathione S-transferase (GST)-VWF73-H substrate in 3 h, but it did cleave the substrate at a site other than the Tyr-Met bond after 16-24 h of incubation. Remarkably, the addition of even one or several proximal carboxyl-terminal domains of ADAMTS13 restored substrate specificity. Full proteolytic activity, however, was not achieved until all of the proximal carboxyl-terminal domains were added. The addition of TSP1 2-8 repeats and two CUB domains did not further increase proteolytic activity. Furthermore, ADAMTS13 truncated after the spacer domain with or without metalloprotease domain bound GST-VWF73-H with a K(d) of approximately 7.0 or 13 nm, comparable with full-length ADAMTS13 (K(d) = 4.6 nm). Metalloprotease domain did not bind GST-VWF73-H detectably, but the disintegrin domain, first TSP1 repeat, Cys-rich domain, and spacer domain bound GST-VWF73-H with K(d) values of 489, 136, 121, and 108 nm, respectively. These proximal carboxyl-terminal domains dose-dependently inhibited cleavage of fluorescent resonance energy transfer (FRETS)-VWF73 by full-length ADAMTS13 and ADAMTS13 truncated after the spacer domain. These data demonstrated that the proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for recognition and cleavage of von Willebrand factor between amino acid residues Asp(1595) and Arg(1668).  相似文献   

12.
In osteoarthritis, chondrocytes undergo a phenotype shift characterised by reduced expression of SOX9 (sry-box 9) and increased production of cartilage-degrading enzymes, e.g. MMP13 (matrix metalloproteinase 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). The chondrocyte clock is also altered. Specifically, the peak level of PER2 is elevated, but peak level of BMAL1 reduced in osteoarthritic chondrocytes. The purpose of this study was to determine whether increased PER2 expression causes disease-associated changes in chondrocyte activity and to identify whether known risk factors for osteoarthritis induce changes in PER2 and BMAL1 expression. Primary human chondrocytes isolated from macroscopically normal cartilage were serum-starved overnight then re-fed with serum-replete media with/without interleukin 1β (IL-1β) (10 ng/mL), hydrogen peroxide (100 µM) or basic calcium phosphate (BCP) crystals (50 µg/mL). Peak level of BMAL1 was lower, whereas PER2 levels remained elevated for longer, in chondrocytes treated with IL-1β, hydrogen peroxide or BCP crystals compared to untreated cells. Levels of SOX9 were lower, whereas levels of ADAMTS5 and MMP13 were higher, in chondrocytes exposed to any of the three treatments compared to untreated cells. Knockdown of PER2 using siRNA partially abrogated the effects of each treatment on chondrocyte phenotype marker expression. Similarly, in chondrocytes isolated from osteoarthritic cartilage PER2 knockdown was associated with increased SOX9, reduced ADAMTS5 and reduced RNA and protein levels of MMP13 indicating partial mitigation of the osteoarthritic phenotype. Conversely, further ablation of BMAL1 expression in osteoarthritic chondrocytes resulted in a further reduction in SOX9 and increase in MMP13 expression. Overexpression of PER2 in the H5 chondrocyte cell line led to increased ADAMTS5 and MMP13 and decreased SOX9 expression. Localised inflammation, oxidative stress and BCP crystal deposition in osteoarthritic joints may contribute to disease pathology by inducing changes in the chondrocyte circadian clock.  相似文献   

13.
Aggrecanase activities of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases were measured with a recombinant aggrecan fragment and two monoclonal antibodies. Recombinant human aggrecan interglobular domain was first incubated in the presence of ADAMTS enzymes. The aggrecan peptide with the N-terminal sequence ARGSVIL released upon hydrolysis was then quantified in an enzyme-linked immunosorbent assay (ELISA) with an anti-neoepitope antibody specific for the N-terminal ARGSVIL sequence and a second anti-aggrecan peptide antibody. For higher sensitivity of the assay, P1-P5 residues of the aggrecanase site within the aggrecan substrate were changed by in vitro mutagenesis. Specific activities of recombinant truncated ADAMTS1 and ADAMTS4 estimated with authentic aggrecan interglobular domain amounted to 2.4 +/- 0.4 and 21.7 +/- 9.5 nmoles hydrolyzed substrate/min.mg, respectively. The values were 10.3 +/- 5.1 and 151.5 +/- 93.5 nmoles/min.mg for hydrolysis of the modified substrate. The aggrecanase activity assay can be used for (1) kinetic characterization of aggrecanase activities of human and animal ADAMTS, (2) screening of inhibitors for aggrecan hydrolyzing ADAMTS, and (3) estimation of aggrecanase activities in biological samples.  相似文献   

14.
A disintegrin-like and metalloprotease with thrombospondin type I motif (ADAMTS9) is a member of the secreted metalloprotease family that is believed to digest extracellular matrix (ECM) proteins outside of cells. Its Caenorhabditis elegans orthologue, GON-1, is involved in ECM degradation and is required for gonad morphogenesis. ADAMTS9 and GON-1 have similar domain structures, and both have a unique C-terminal domain called the "GON domain," whose function remains unknown. Here we show that down-regulation of human ADAMTS9 and C. elegans GON-1 results in the inhibition of protein transport from the endoplasmic reticulum (ER) to the Golgi. This phenotype was rescued by the expression of the GON domain localizing in the ER in human cells and C. elegans. We propose a novel function of ADAMTS9 and GON-1 in the ER that promotes protein transport from the ER to the Golgi. This function is GON-domain dependent but protease activity independent.  相似文献   

15.
ADAMTS13 is the metalloprotease responsible for the proteolytic degradation of von Willebrand factor (VWF). A severe deficiency of this VWF-cleaving protease activity causes thrombotic thrombocytopenic purpura. This protease, comprising 1,427 amino acid residues, is composed of multiple domains, i.e., a preproregion, a metalloprotease domain, a disintegrin-like domain, a thrombospondin type-1 motif (Tsp1), a cysteine-rich domain, a spacer domain, seven Tsp1 repeats, and two CUB domains. We prepared one polyclonal and seven monoclonal antibodies recognizing distinct epitopes spanning the entire ADAMTS13 molecule. Of these antibodies, two of the monoclonal ones, which recognize the disintegrin-like and cysteine-rich/spacer domains, respectively, abolished the hydrolytic activity of ADAMTS13 toward both a synthetic substrate, FRETS-VWF73, and the natural substrate, VWF. In addition, these antibodies blocked the binding of ADAMTS13 to VWF. These results revealed that the region between the disintegrin-like and cysteine-rich/spacer domains interacts with VWF. Employing these established polyclonal and monoclonal antibodies, we examined the molecular species of ADAMTS13 circulating in the blood by immunoprecipitation followed by Western blot analysis, and estimated the plasma concentration of ADAMTS13 by enzyme-linked immunosorbent assay. These studies indicated that the major fraction of ADAMTS13 in blood plasma consisted of the full-length form. The concentration of ADAMTS13 in normal plasma was approximately 0.5-1 microg/ml.  相似文献   

16.
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn(341)-Phe(342) and Glu(373)-Ala(374). While several matrix metalloproteinases have been shown to cleave at Asn(341)-Phe(342), an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu(373)-Ala(374) and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammation-associated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu(373)-Ala(374) site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.  相似文献   

17.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

18.
ADAMTS13 is a secreted zinc metalloprotease expressed by various cell types. Here, we investigate its cellular pathway in endogenously expressing liver cell lines and after transient transfection with ADAMTS13. Besides compartmentalizations of the cellular secretory system, we detected an appreciable level of endogenous ADAMTS13 within the nucleus. A positively charged amino acid cluster (R-Q-R-Q-R-Q-R-R) present in the ADAMTS13 propeptide may act as a nuclear localization signal (NLS). Fusing this NLS-containing region to eGFP greatly potentiated its nuclear localization. Bioinformatics analysis suggests that the ADAMTS13 CUB-2 domain has a double-stranded beta helix (DSBH) structural architecture characteristic of various protein-protein interaction modules like nucleoplasmins, class I collagenase, tumor necrosis factor ligand superfamily, supernatant protein factor (SPF) and the B1 domain of neuropilin-2. Based on this contextual evidence and that largely conserved polar residues could be mapped on to a template CUB domain homolog, we hypothesize that a region in the ADAMTS13 CUB-2 domain with conserved polar residues might be involved in protein-protein interaction within the nucleus.  相似文献   

19.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

20.
Zhang J  Ma Z  Dong N  Liu F  Su J  Zhao Y  Shen F  Wang A  Ruan C 《PloS one》2011,6(7):e22157
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号