首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

2.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

3.
In the Rosaceae, Scrophulariaceae, and Solanaceae, the stylar product of the self-incompatibility (S-) locus is an RNase. Using protein sequence data from 34 RNase genes (three fungal RNases, seven angiosperm non-S RNases, 11 Rosaceae S-alleles, three Scrophulariaceae S-alleles, and ten Solanaceae S-alleles) we reconstructed the genealogy of angiosperm RNases using the neighbor joining method and two distance metrics in order to assess whether use of S-RNases in these families is the result of homology or convergence. Four monophyletic groups of angiosperm RNases were found: the S-RNases of each of the three families and a group comprising most of the angiosperm non-S RNases. The S-RNases of the Scrophulariaceae and Solanaceae were found to be homologous but strong inference concerning the homology or convergence of S-RNases from the Rosaceae with those of the other families was not possible because of uncertain placement of both the root and two of the angiosperm non-S RNases. The most recent common ancestor of the Rosaceae and both the Scrophulariaceae and Solanaceae is shared by ~80% of dicot families. If the -RNases of the Rosaceae are homologous to those of the Scrophulariaceae and Solanaceae, then many other dicot families might be expected to share RNases as the mechanism of gametophytic self-incompatibility.  相似文献   

4.
 Many flowering plants contain stylar S-RNases that are involved in self-incompatibility and S-like RNases of which the biological function is uncertain. This paper reports the deduced amino acid sequence of an S-like RNase gene (PD1) from the self-incompatible plant Prunus dulcis (almond). The amino acid sequence of PD1, which was derived from cDNA and genomic DNA clones, showed 34–86% identity to acidic plant S-like RNases reported so far, with the highest degree of similarity being to an S-like RNase from Japanese pear (Pyrus pyrifolia). Based on RNA hybridisation experiments it appears that, like for many other S-like RNases, the expression of PD1 is not pistil-specific. Analysis of the genomic structure revealed the presence of three introns, of which one is similar in location to that of the related S-RNase gene from Solanaceae and Rosaceae. At least four bands hybridising to PD1 were found upon Southern hybridisation, suggesting the presence of a multigene family of S-like RNase genes in almond. The putative biological function of PD1 is discussed. Received: 22 November 1999 / Revision received: 18 February 2000 · Accepted: 13 March 2000  相似文献   

5.
In order to investigate the S-RNase allele structure of a Prunus webbii population from the Montenegrin region of the Balkans, we analyzed 10 Prunus webbii accessions. We detected 10 different S-RNase allelic variants and obtained the nucleotide sequences for six S-RNases. The BLAST analysis showed that these six sequences were new Prunus webbii S-RNase alleles. It also revealed that one of sequenced alleles, S(9)-RNase, coded for an amino acid sequence identical to that for Prunus dulcis S(14)-RNase, except for a single conservative amino acid replacement in the signal peptide region. Another, S(3)-RNase, was shown to differ by only three amino acid residues from Prunus salicina Se-RNase. The allele S(7)-RNase was found to be inactive by stylar protein isoelectric focusing followed by RNase-specific staining, but the reason for the inactivity was not at the coding sequence level. Further, in five of the 10 analyzed accessions, we detected the presence of one active basic RNase (marked PW(1)) that did not amplify with S-RNase-specific DNA primers. However, it was amplified with primers designed from the PA1 RNase nucleotide sequence (basic "non-S RNase" of Prunus avium) and the obtained sequence showed high homology (80%) with the PA1 allele. Although homologs of PA1 "non-S RNases" have been reported in four other Prunus species, this is the first recorded homolog in Prunus webbii. The evolutionary implications of the data are discussed.  相似文献   

6.
In several gametophytic self-incompatible species of the Solanaceae, a group of RNases named relic S-RNase has been identified that belong to the S-RNase lineage but are no longer involved in self-incompatibility. However, their function, evolution and presence in the Scrophulariaceae remained largely unknown. Here, we analyzed the expression of S-RNase and its related genes in Antirrhinum, a member of the Scrophulariacaeae, and identified a pistil-specific RNase gene; AhRNase29 encodes a predicted polypeptide of 235 amino acids with an estimated molecular weight of 26 kDa. Sequence and phylogenetic analyses indicated that AhRNase29 forms a monophyletic clade with Antirrhinum S-RNases, similar to that observed for other relic S-RNases. Possible evolution and function of relic S-RNases are discussed.  相似文献   

7.
8.
A stylar S-RNase is associated with gametophytic self-incompatibility in the Rosaceae, Solanaceae, and Scrophulariaceae. This S-RNase is responsible for S-allele-specific recognition in the self-incompatible reaction, but how it functions in specific discrimination is not clear. Window analysis of the numbers of synonymous (dS) and non-synonymous (dN) substitutions in rosaceous S-RNases detected four regions with an excess of dN over dS in which positive selection may operate (PS regions). The topology of the secondary structure of the S-RNases predicted by the PHD method is very similar to that of fungal RNase Rh whose tertiary structure is known. When the sequences of S-RNases are aligned with the sequence of RNase Rh based on the predicted secondary structures, the four PS regions correspond to two surface sites on the tertiary structure of RNase Rh. These findings suggest that in S-RNases the PS regions also form two sites and are candidates for the recognition sites for S-allele-specific discrimination.  相似文献   

9.
S-RNase-mediated self-incompatibility   总被引:13,自引:0,他引:13  
The Solanaceae, Rosaceae, and Scrophulariaceae families all possess an RNase-mediated self-incompatibility mechanism through which their pistils can recognize and reject self-pollen to prevent inbreeding. The highly polymorphic S-locus controls the self-incompatibility interaction, and the S-locus of the Solanaceae has been shown to be a multi-gene complex in excess of 1.3 Mb. To date, the function of only one of the S-locus genes, the S-RNase gene, has been determined. This article reviews the current status of the search for the pollen S-gene and the current models for how S-haplotype specific inhibition of pollen tubes can be accomplished by S-RNases.  相似文献   

10.
Recently, an S haplotype-specific F-box (SFB) gene has been proposed as a candidate for the pollen-S specificity gene of RNase-mediated gametophytic self-incompatibility in Prunus (Rosaceae). We have examined two pollen-part mutant haplotypes of sweet cherry (Prunus avium). Both were found to retain the S-RNase, which determines stylar specificity, but one (S3' in JI 2434) has a deletion including the haplotype-specific SFB gene, and the other (S4' in JI 2420) has a frame-shift mutation of the haplotype-specific SFB gene, causing amino acid substitutions and premature termination of the protein. The loss or significant alteration of this highly polymorphic gene and the concomitant loss of pollen self-incompatibility function provides compelling evidence that the SFB gene encodes the pollen specificity component of self-incompatibility in Prunus. These loss-of-function mutations are inconsistent with SFB being the inactivator of non-self S-RNases and indicate the presence of a general inactivation mechanism, with SFB conferring specificity by protecting self S-RNases from inactivation.  相似文献   

11.
Gausing K 《Planta》2000,210(4):574-579
 A group of frequent cDNA clones from a young-leaf cDNA library was found to code for a homologue of S-ribonucleases (S-RNases) involved in gametophytic incompatibility and the so-called S-like RNases active in flowers and in vegetative tissues. The derived amino acid sequence starts with a signal peptide and has a 27-amino-acid C-terminal extension of unknown function. The barley (Hordeum vulgare L.) gene, rsh1 (for RNase S-like homologue) corresponding to the cDNA clones was isolated. The gene has three introns and the position of one intron corresponds to the site of the single, small intron in the S-RNase genes. The deduced amino acid sequence of mature RSH1 shares 35% identical and 58% similar amino acid residues with an S-like RNase from tomato, RNase LE. However, two active-site histidine residues, conserved between all S and S-like RNases are replaced by serine residues in RSH1. The new barley RNase S-like homologue is clearly related to the family of active RNases but is probably not active as an RNase. Sequences from the same class of presumably inactive RNases have been recorded in maize, rice and sorghum. The barley gene is exclusively expressed in young leaf tissue and is substantially induced by light. Received: 26 July 1999 / Accepted: 26 October 1999  相似文献   

12.
Gametophytic self-incompatibility in Rosaceae, Solanaceae, and Scrophulariaceae is controlled by the S locus, which consists of an S-RNase gene and an unidentified "pollen S" gene. An approximately 70-kb segment of the S locus of the rosaceous species almond, the S haplotype-specific region containing the S-RNase gene, was sequenced completely. This region was found to contain two pollen-expressed F-box genes that are likely candidates for pollen S genes. One of them, named SFB (S haplotype-specific F-box protein), was expressed specifically in pollen and showed a high level of S haplotype-specific sequence polymorphism, comparable to that of the S-RNases. The other is unlikely to determine the S specificity of pollen because it showed little allelic sequence polymorphism and was expressed also in pistil. Three other S haplotypes were cloned, and the pollen-expressed genes were physically mapped. In all four cases, SFBs were linked physically to the S-RNase genes and were located at the S haplotype-specific region, where recombination is believed to be suppressed, suggesting that the two genes are inherited as a unit. These features are consistent with the hypothesis that SFB is the pollen S gene. This hypothesis predicts the involvement of the ubiquitin/26S proteasome proteolytic pathway in the RNase-based gametophytic self-incompatibility system.  相似文献   

13.
Kato S  Mukai Y 《Heredity》2004,92(3):249-256
In the Rosaceae family, which includes Prunus, gametophytic self-incompatibility (GSI) is controlled by a single multiallelic locus (S-locus), and the S-locus product expressed in the pistils is a glycoprotein with ribonuclease activity (S-RNase). Two populations of flowering cherry (Prunus lannesiana var. speciosa), located on Hachijo Island in Japan's Izu Islands, were sampled, and S-allele diversity was surveyed based on the sequence polymorphism of S-RNase. A total of seven S-alleles were cloned and sequenced. The S-RNases of flowering cherry showed high homology to those of Prunus cultivars (P. avium and P. dulcis). In the phylogenetic tree, the S-RNases of flowering cherry and other Prunus cultivars formed a distinct group, but they did not form species-specific subgroups. The nucleotide substitution pattern in S-RNases of flowering cherry showed no excess of nonsynonymous substitutions relative to synonymous substitutions. However, the S-RNases of flowering cherry had a higher Ka/Ks ratio than those of other Prunus cultivars, and a subtle heterogeneity in the nucleotide substitution rates was observed among the Prunus species. The S-genotype of each individual was determined by Southern blotting of restriction enzyme-digested genomic DNA, using cDNA for S-RNase as a probe. A total of 22 S-alleles were identified. All individuals examined were heterozygous, as expected under GSI. The allele frequencies were, contrary to the expectation under GSI, significantly unequal. The two populations studied showed a high degree of overlap, with 18 shared alleles. However, the allele frequencies differed considerably between the two populations.  相似文献   

14.
Vieira CP  Charlesworth D 《Heredity》2002,88(3):172-181
The self-incompatibility system of flowering plants is a classic example of extreme allelic polymorphism maintained by frequency-dependent selection. We used primers designed from three published Antirrhinum hispanicum S-allele sequences in PCR reactions with genomic DNA of plants sampled from natural populations of Antirrhinum and Misopates species. Not surprisingly, given the polymorphism of S-alleles, only a minority of individuals yielded PCR products of the expected size. These yielded 35 genomic sequences, of nine different sequence types of which eight are highly similar to the A. hispanicum S-allele sequences, and one to a very similar unpublished Antirrhinum S-like RNase sequence. The sequence types are well separated from the S-RNase sequences from Solanaceae and Rosaceae, and also from most known "S-like" RNase sequences (which encode proteins not involved in self-incompatibility). An association with incompatibility types has so far been established for only one of the putative S-alleles, but we describe evidence that the other sequences are also S-alleles. Variability in these sequences follows the pattern of conserved and hypervariable regions seen in other S-RNases, but no regions have higher replacement than silent diversity, unlike the results in some other species.  相似文献   

15.
This review summarises current understanding of the evolution of self-incompatibility inferred from DNA sequence analysis. Self-incompatibility in many plant families is controlled by a single, highly polymorphicS-locus which, in the Solanaceae, encodes an allelic series of stylar ribonucleases known as the S-RNases. PCR approaches are a convenient way to examine the diversity of S-RNase sequences within and between wild populations of a self-incompatible species and provide a unique view into the species' current and historic population structure. Similar molecular appoaches have also been used to show that S-RNases are involved in self-incompatibility in families other than the Solanaceae. A model for the evolution of ribonuclease-based self-incompatibility systems is discussed.  相似文献   

16.
Background: S-RNase-based self-incompatibility (SI) occurs in the Solanaceae, Rosaceae and Plantaginaceae. In all three families, compatibility is controlled by a polymorphic S-locus encoding at least two genes. S-RNases determine the specificity of pollen rejection in the pistil, and S-locus F-box proteins fulfill this function in pollen. S-RNases are thought to function as S-specific cytotoxins as well as recognition proteins. Thus, incompatibility results from the cytotoxic activity of S-RNase, while compatible pollen tubes evade S-RNase cytotoxicity. SCOPE: The S-specificity determinants are known, but many questions remain. In this review, the genetics of SI are introduced and the characteristics of S-RNases and pollen F-box proteins are briefly described. A variety of modifier genes also required for SI are also reviewed. Mutations affecting compatibility in pollen are especially important for defining models of compatibility and incompatibility. In Solanaceae, pollen-side mutations causing breakdown in SI have been attributed to the heteroallelic pollen effect, but a mutation in Solanum chacoense may be an exception. This has been interpreted to mean that pollen incompatibility is the default condition unless the S-locus F-box protein confers resistance to S-RNase. In Prunus, however, S-locus F-box protein gene mutations clearly cause compatibility. CONCLUSIONS: Two alternative mechanisms have been proposed to explain compatibility and incompatibility: compatibility is explained either as a result of either degradation of non-self S-RNase or by its compartmentalization so that it does not have access to the pollen tube cytoplasm. These models are not necessarily mutually exclusive, but each makes different predictions about whether pollen compatibility or incompatibility is the default. As more factors required for SI are identified and characterized, it will be possible to determine the role each process plays in S-RNase-based SI.  相似文献   

17.
We surveyed ribonuclease activity in the styles of Nicotiana spp. and found little or no activity in self-compatible species and in a self-compatible accession of a self-incompatible species. All self-incompatible species had high levels of ribonuclease activity in their style. Interestingly, one self-compatible species, N. sylvestris, had a level of stylar ribonuclease activity comparable to that of some self-incompatible Nicotiana species. A ribonuclease with biochemical properties similar to those of the self-incompatibility (S-)RNases of N. alata was purified from N. sylvestris styles. The N-terminal sequence of this protein was used to confirm the identity of a cDNA corresponding to the stylar RNase. The amino acid sequence deduced from the cDNA was related to those of the S-RNases and included the five conserved regions characteristic of these proteins. It appears that the N. sylvestris RNase may have evolved from the S-RNases and is an example of a 'relic S-RNase'. A number of features distinguish the N. sylvestris RNase from the S-RNases, and the role these may have played in the presumed loss of the self-incompatibility response during the evolution of this species are discussed.  相似文献   

18.
Wild potato species have a gametophytic self-incompatibility system controlled by a single multiallelic S locus. In the style, the S-RNase gene codes for an allele-specific ribonuclease that is involved in the rejection of pollen that carries the same S haplotype. This gene has 5 conserved regions (C1-C5) and highly variable regions outside of these areas that play a role in S-RNase allele specificity. In this work, PCR-mediated amplification of genomic DNA from 2 Solanum chacoense accessions was performed using primers designed on the basis of the C1 and C4 conserved regions. By sequencing the PCR products, a new S-RNase allele (S16) was identified in 1 plant of the QBCM argentinian accession. Comparison of the partial sequence (from C2 to C3) of S16 RNase with those of 11 S-RNase genes of other Solanaceae species showed the highest and the lowest similarity scores within the same plant species (respectively, 71% with the S11 and S13 RNase and 35% with the S2 RNase). Differences at the nucleotide level between S16 and S11 RNase alleles are discussed.  相似文献   

19.
S-RNase-based gametophytic self-incompatibility appears to be the most phylogenetically widespread form of self-incompatibility found in the angiosperms, having been reported in the Solanaceae, Scrophulariaceae, and Rosaceae. This intraspecific breeding barrier is controlled by a single genetic locus termed S. Rejection of self-pollen has been shown to be mediated in the pistil by a highly polymorphic series of ribonucleases, but as yet the pollen component of this recognition system has not been identified. Here we review our present knowledge concerning the structure, functions, and evolution of S-RNases and the S-loci in which they reside. In addition we present two new phylogenetic analyses of S-RNases which suggest that (1). sequence variability between S-alleles is spread across the whole gene and is not as clustered as is generally believed and (2). there is evidence of recombination and/or diversifying selection in two distinct regions of S-RNases. The implications of these findings are discussed.  相似文献   

20.
cDNAs encoding three S-RNases of almond (Prunus dulcis), which belongs to the family Rosaceae, were cloned and sequenced. The comparison of amino acid sequences between the S-RNases of almond and those of other rosaceous species showed that the amino acid sequences of the rosaceous S-RNases are highly divergent, and intra-subfamilial similarities are higher than inter-subfamilial similarities. Twelve amino acid sequences of the rosaceous S-RNases were aligned to characterize their primary structural features. In spite of?their high level of diversification, the rosaceous S-RNases were found to have five conserved regions, C1, C2, C3, C5, and RC4 which is Rosaceae-specific conserved region. Many variable sites fall into one region, named RHV. RHV is located at a similar position to that of the hypervariable region a (HVa) of the solanaceous S-RNases, and is assumed to be involved in recognizing S-specificity of pollen. On the other hand, the region corresponding to another solanaceous hypervariable region (HVb) was not variable in the rosaceous S-RNases. In the phylogenetic tree of the T2/S type RNase, the rosaceous S-RNase fall into two subfamily-specific groups (Amygdaloideae and Maloideae). The results of sequence comparisons and phylogenetic analysis imply that the present S-RNases of Rosaceae have diverged again relatively recently, after the divergence of subfamilies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号