首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A representative set of vanadium(IV and V) compounds in varying coordination environments has been tested in the concentration range 1 to 10(-6) mM, using transformed mice fibroblasts (cell line SV 3T3), with respect to their short-term cell toxicity (up to 36 hours) and their ability to stimulate glucose uptake by cells. These insulin-mimetic tests have also been carried out with non-transformed human fibroblasts (cell line F26). The compounds under investigation comprise established insulin-mimetic species such as vanadate ([H(2)VO(4)](-)), [VO(acetylacetonate)(2)], [VO(2)(dipicolinate)](-) and [VO(maltolate)(2)], and new systems and coordination compounds containing OO, ON, OS, NS and ONS donor atom sets. A vitality test assay, measuring the reduction equivalents released in the mitochondrial respiratory chain by intracellular glucose degradation, is introduced and the results are counter-checked with (3)H-labelled glucose. Most compounds are toxic at the 1 mM concentration level, and most compounds are essentially non-toxic and about as effective as or more potent than insulin at concentrations of 0.01 mM and below. V(V) compounds tend to be less toxic than V(IV)compounds, and complexes containing thio functional ligands are somewhat more toxic than others. Generally, ON ligation is superior in insulin-mimetic efficacy to OO or O/ NS coordination, irrespective of the vanadium oxidation state. There is, however, no striking correlation between the nature of the ligand systems and the insulin-mimetic potency in these cell culture tests, encompassing 41 vanadium compounds, the results on 22 of which are reported in detail here. The syntheses and characteristics of various new compounds are provided together with selected speciation results. The crystal and molecular structures of [[VO(naph-tris)](2)] [where naph-tris is the Schiff base formed between o-hydroxynaphthaldehyde and tris(hydroxymethyl)amine] are reported. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-001-0311-5.  相似文献   

2.
3.
Reaction of [MoO2(acac)2] with (S is a thioether, S′ a thiophenolate function) yielded the compound Li7(thf)17{MoO}8 · 10thf · hexane, where {MoO}8 represents one 1, three (2, linked, via the oxo group, to [Li(thf)3]+) and two (3a, linked by two [Li(thf)2]+).A mixed-valent variant of 3, (3b, with an additional[Li(thf)3]+ attached to S′), was also identified. The compounds model features pertinent to oxo-transferases containing the molybdopterin cofactor.  相似文献   

4.
To better understand the mechanism of vanadium reduction in ascidians, we examined the reduction of vanadium(V) to vanadium(IV) by NADPH and the reduction of vanadium(IV) to vanadium(III) by L-cysteine methyl ester (CysME). UV-vis and electron paramagnetic resonance spectroscopic studies indicated that in the presence of several biologically relevant ligands vanadium(V) and vanadium(IV) were reduced by NADPH and CysME, respectively. Specifically, NADPH directly reduced vanadium(V) to vanadium(IV) with the assistance of ligands that have a formation constant with vanadium(IV) of greater than 7. Also, glycylhistidine and glycylaspartic acid were found to assist the reduction of vanadium(IV) to vanadium(III) by CysME.  相似文献   

5.
Vanadyl sulfate reacts with the peroxy acid oxidant KHSO5 to produce guanine-selective oxidation of a 167-bp restriction fragment of DNA. The oxidized lesions result in strand scission after hot piperidine treatment. Although several reactive intermediates are possible, quenching studies with ethanol and tert-butyl alcohol suggest that a monoperoxysulfate radical or a caged sulfate radical are the likely species responsible for oxidation of guanine. Several oxidants and various vanadium complexes (including insulin mimetic compounds) were studied with DNA for comparison. None of the other vanadium complexes showed modification of the double-stranded 167-bp fragment of DNA in the presence of KHSO5. The reactivity of VOSO4 may be due to its irreversible oxidation potential of 0.77 V (vs. Ag+/AgCl, pH 7.0, 10 mM phosphate), making it an appropriate catalyst for decomposition of monoperoxysulfate.  相似文献   

6.
The complexation of VO(2+) ion by ten acetamidrazone and 2-phenylacetamidrazone derivatives (L) was studied. Sixteen novel VO(2+) complexes were synthesised and characterised through the combined application of analytical and spectroscopic (EPR (electron paramagnetic resonance), FT-IR and diffuse reflectance electronic absorption) techniques. Eight are 1:2 species of composition [VOL(2)]SO(4) x xH(2)O and eight are 1:1 species with formula [VOL(SO(4))](n) x xH(2)O. The experimental data suggest a bidentate coordination mode for L with the donor set formed by the imine nitrogen and the carbonyl oxygen. EPR spectra indicate a square-pyramidal geometry for the 1:1 complexes and a penta-coordinated geometry intermediate between the square-pyramid and the trigonal-bipyramid for the 1:2 species. The hyperfine coupling constant along z axis, A(z), of the 1:2 complexes exhibits a marked reduction with respect to the predicted value (approximately 148x10(-4)cm(-1) vs. approximately 170x10(-4)cm(-1)). IR spectroscopic evidence supports the presence of sulphate as a counter-ion in the 1:2, and as a bridging bidentate ligand in the 1:1 complexes. Insulin-mimetic tests on modified fibroblasts, based on a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide) assay, performed on three of the bis-chelated and eight of the mono-chelated derivatives, indicate that they are biologically active. The similar hydro/lipophilicity and the lack of ligand substituents recognizable by cell membrane receptors prevent substantial differentiation in the insulin-mimetic action.  相似文献   

7.
The chemistry of vanadium compounds that can be taken orally is very timely since a vanadium(IV) compound, KP-102, is currently in clinical trials in humans, and the fact that human studies with inorganic salts have recently been reported. VO(acac)2 and VO(Et-acac)2 (where acac is acetylacetonato and Et-acac is 3-ethyl-2,4-pentanedionato) have long-term in vivo insulin mimetic effects in streptozotocin induced diabetic Wistar rats. Structural characterization of VO(acac)2 and two derivatives, VO(Me-acac)2 and VO(Et-acac)2, in the solid state and solution have begun to delineate the size limits of the insulin-like active species. Oral ammonium dipicolinatooxovanadium(V) is a clinically useful hypoglycemic agent in cats with naturally occurring diabetes mellitus. This compound is particularly interesting since it represents the first time that a well-characterized organic vanadium compound with the vanadium in oxidation state five has been found to be an orally effective hypoglycemic agent in animals.  相似文献   

8.
Reaction of the multifunctional phenolic ligands 2,5-bis[N,N-bis(carboxymethyl)aminomethyl]hydroquinone (H6cahq), 2,2'-bis[N,N-bis(carboxymethyl)aminomethyl]-4,4'-isopropylidenediphen ol(H6capd),2,2',2'-tris[N,N-bis(carboxymethyl)aminomethyl]-1,1 ,1-tris(4-hydroxyphenyl)ethane (H9catp) and the monofunctional 2-[N,N-bis(carboxymethyl)aminomethyl]-4-carboxyphenol (H3cacp), with VOSO4 and NaVO3 affords the oxo-bridged mixed-valence vanadium(IV/V) Na6[(VO)4(mu-O)2(mu-cahq)2] x Na2SO4 x 20H2O (1), HnNa(3-n)[(VO)2(mu-O)(mu-cacp)2] (2), HnNa(3-n)[(VO)4(mu-O)2(mu-capd)2] (3), HnNa(9-n)[(VO)6(mu-O)3(mu3-catp)2] (4). In addition to the synthesis, we report the infrared, magnetic, optical and electrochemical properties of these complexes. The hydrolytic stability at different pH values was also investigated using visible spectroscopy.  相似文献   

9.
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(μ2-O)]2 (1) and [VO(DKN)(μ2-O)]2·½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4·4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)(OMe)]·1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern.  相似文献   

10.
X L Shi  X Y Sun  N S Dalal 《FEBS letters》1990,271(1-2):185-188
The in vivo toxicity of vanadium(V) has been found to correlate with the depletion of cellular glutathione and related non-protein thiols. With a view to understanding the mechanism for this observation, we have investigated the oxidation of glutathione, cysteine N-acetylcysteine and penicillamine by vanadium(V), using electron spin resonance (ESR) and ESR spin trapping methodology. The spin trap used was 5,5-dimethyl-1-pyrroline 1-oxide (DMPO). It is found that the oxidation of these thiols by vanadium(V) generates the corresponding thiyl radicals and vanadium- (IV) complexes. The results suggest that free radical reactions play a significant role in the depletion of cellular thiols by vanadium(V) and hence in vanadium(V) toxicity.  相似文献   

11.
The proligands PicMe-AaR (PicMe = methoxipicolyl-5-amide, where the amide substituent is an amino acid AaR = HisH, HisMe, IleH, IleMe, TrpH, TrpMe, HTyrEt, tBuTyrMe, HThrMe, tBuThrMe) and the complexes [VO(Pic-AaR)2] have been synthesised and characterised. A detailed EPR study of the VO2+/Pic-His systems in water revealed the predominance of the complex [VO(Pic-His)H2O] in the pH range 2-6, with tridentate coordination of Pic-His via the picolinate moiety and imidazole-Nδ. Speciation analyses of the binary systems VO2+/Pic-Aa (Aa = His, Ile, Trp) and the ternary systems VO2+/Pic-Aa/B (Aa = His, Ile; B = citrate (cit), lactate (lac), phosphate) showed a predominance of the ternary complexes [VO(Pic-Aa)(cit/lac)] and [VO(Pic-Aa)(cit/lac)OH] in the physiological pH regime. If, in addition, human serum albumin (HAS) and apotransferrin (Tf) are present, with all of the low and high molecular mass constituents in their blood serum concentrations, about two thirds of VO2+ is bound to the protein, while there is still a sizable amount of ternary complex [VO(Pic-Aa)(cit/lac)] present (about 1/4 for Pic-His and 1/3 for Pic-Ile) when the vanadium(IV) concentration is relatively high; at lower concentrations Tf is the predominant binder. Insulin-mimetic studies for VO2+/Pic-Aa (Aa = His, Ile, Tyr and Trp), based on a lipolysis assay with rat adipocytes, provided IC50 values of 0.41(1) for VO2+/Pic-His and VO2+/Pic-Ile, which compares with 0.87(17) for VOSO4.  相似文献   

12.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

13.
The synthesis, spectroscopic, enzyme-inhibition, and free-radical-scavenging properties of a series of vanadium(IV) complexes, compounds 1-10, were investigated. These complexes exhibit a dimeric structure with hydrazide ligands coordinated in a bidentate fashion. All complexes are stable in the solid state, but exhibit varying degrees of stability in solution. In coordinating solvent such as DMSO, stepwise binding of two solvent molecules at the 6th positions trans to the V double bond O bond of the dimeric unit is observed. The dimeric compounds are converted to monomeric species in which both solvent molecules and the hydrazide ligands are coordinated to the V(IV) center. The free hydrazide ligands 11-20 were inactive against alpha-glucosidase, but the V(IV) complexes showed varying degrees of inhibition, depending on the type of ligand. The DPPH-radical-scavenging activities of 1-20 were determined, which indicated that steric and/or electronic effects responsible for changes in geometry play important roles in terms of antioxidant potential.  相似文献   

14.
Reaction of vanadium(III) chloride with 8-quinolinol (Hqn) gave a mononuclear vanadium(IV) complex, [VOCl2(H2O)2] 1) · 2H2qn · 2Cl · CH3CN, and three dinuclear vanadium(IV) complexes: [V2O2Cl2(qn)2(H2O)2] (2) · Hqn, [V2O2Cl2(qn)2(C3H7OH)2] (3), and [V2O2Cl2(qn)2(C4H9OH)2] (4). Reaction of vanadium(III) chloride with 5-chloro-8-quinolinol (HClqn) gave four dinuclear vanadium(IV) complexes: [V2O2Cl2(Clqn)2(H2O)2] (5) · 2HClqn, [V2O2Cl2(Clqn)2(C3H7OH)2] (6), [V2O2Cl2(Clqn)2(C6H5CH2OH)2] (7), and [V2O2Cl2(Clqn)2(C4H9OH)2] (8) · 2C4H9OH. Reaction of vanadium(III) chloride with 5-fluoro-8-quinolinol (HFqn) gave two dinuclear vanadium(IV) complexes: [V2O2Cl2(Fqn)2(H2O)2] (9) · HFqn · 2H2O and V2O2Cl2(Fqn)2(C3H7OH)2] (10). X-ray structures of 1 · 2H2qn · 2Cl · CH3CN, 3, 4, 6, 7, 8 · 2 t-BuOH, and 10 have been determined. As to the mononuclear species 1 · 2H2qn · 2Cl · CH3CN, coordination of Hqn to vanadium does not occur, but protonation to Hqn occurs to give H2qn+, which links 1’s through hydrogen bonding, while each of the dinuclear species has a terminal and a bridging qn (or Clqn, Fqn) ligand, giving rise to a (V-O)2 ring. Magnetic measurements of 3, 4, 6, 7, and 10 in solid form show very weak antiferromagnetic behavior, and the effective magnetic moments are close to spin only value (2.44) of d1-d1 system, while ESR of 3 in THF shows dissociation to monomeric species. Change from mononuclear, 1, to dinuclear, 2, species was followed by the change of electronic spectrum.  相似文献   

15.
A new insulin-enhancing oxovanadium complex 5-chloro-salicylaldhyde ethylenediamine oxovanadium (V) ([V2O2(μ-O)2L2]) has been synthesized. The complex was characterized by a variety of physical methods, including X-ray crystallography. The X-ray diffraction analysis show a dinuclear complex of two six-coordinate vanadium centers doubly bridged by the oxygen atoms of the Schiff base ligand with a V2O2 diamond core. The complex was administered intragastrically to STZ-diabetic rats for 2 weeks. The biological activity results show that the complex at the dose of 10.0 and 20.0 mg V kg− 1, could significantly decrease the blood glucose level and ameliorate impaired glucose tolerance in STZ-diabetic rats. That results suggested that the complex exerts an antidiabetic effect in STZ-diabetic rats. Furthermore, the complex ([V2O2(μ-O)2L2]) had permeability above 10− 5 cm/s. The experimental results suggested that the vanadium complex permeates via a passive diffusion mechanism. It was also suggested the complex with salen-type ligands has good lipophilic properties and better oral administration. The cytotoxicity of the complex ([V2O2(μ-O)2L2]) on Caco-2 cells was measured by a decrease of cell viability using the MTT assay suggesting that the chlorine atom at C4 of complex [V2O2(μ-O)2L2] increased cytotoxicity for vanadium complexes.  相似文献   

16.
Vanadium plays an important role in biological systems and exhibits a variety of bioactivities. In an effort to uncover the chemistry and biochemistry of vanadium with nitrogen- and oxygen-containing ligands, we report herein the synthesis and spectroscopic characterization of vanadium(IV) complexes with hydrazide ligands. Substituents on these ligands exhibit systematic variations of electronic and steric factors. Elemental and spectral data indicate the presence of a dimeric unit with two vanadium(IV) ions coordinated with two hydrazide ligands along with two H(2)O molecules. The stability studies of these complexes over time in coordinating solvent, DMSO, indicates binding of the solvent molecules to give [V2O2L2(H2O)2(DMSO)2]2+ (L=hydrazide ligand) and then conversion of it to a monomeric intermediate species, [VOL(DMSO)3]1+. Hydrazide ligands are inactive against urease, whereas vanadium(IV) complexes of these ligands show significant inhibitory potential against this enzyme and are found to be non-competitive inhibitors. These complexes also show low phytotoxicity indicating their usefulness for soil ureases. Structure-activity relationship studies indicate that the steric and/or electronic effects that may change the geometry of the complexes play an important role in their inhibitory potential and phytotoxicity.  相似文献   

17.
V(IV) and V(III) reduce molecular oxygen with increasing rates as the pH is raised from 6.0 to 7.4. Under all conditions tested, V(IV) is the more efficient reductant. EDTA and ATP generally inhibit the reduction of oxygen by V(III) and V(IV). In contrast, desferrioxamine accelerates the reduction of oxygen by V(IV) but with decreasing effectiveness at pH 7.4 compared to pH 6.0, while desferrioxamine accelerates the reduction of oxygen by V(III) only at pH 6.0. Histidine enhances the reduction of oxygen by V(IV) at pH 7.0 and 7.4. The observed rates of oxygen reduction by V(III) and V(IV) imply that the intracellular distribution of vanadium among its redox states reflects not an equilibrium but a steady state.  相似文献   

18.
Two platinum(IV) complexes, [Pt(4bt)Cl4] (4) and [Pt(dpyam)Cl4]·DMF (5) (where 4bt is 4,4′-bithiazole and dpyam is 2,2′-dipyridylamine) were prepared from the reaction of H2PtCl6·6H2O with 4,4′-bithiazole and 2,2′-dipyridylamine, respectively, in methanol. Both complexes were fully characterized and their structures were determined by the X-ray diffraction method. These complexes have a bidentate nitrogenous ligand with four chloride anions attached to a Pt(IV) metal in a distorted octahedral environment. These complexes along with three previously reported analogous complexes were used for in vitro cytotoxicity evaluation against four cultures, NIH-3T3, Caco-2, HT-29 and T47D by MTT assay. The methyl group position in the ligand plays an important role in the cytotoxicity of relevant compounds in different cultures. Interestingly, in some cases, the IC50 values of the new complexes were higher for normal cells but lower against cancer cells in comparison with cisplatin, especially in T47D (breast ductal carcinoma).  相似文献   

19.
Ligands, especially desferrioxamine, affect the rate at which vanadium reduces or oxidizes cytochrome c. Whether reduction or oxidation occurs, and how fast, depends on the nature of the ligand, the state of reduction of the vanadium, the pH (6.0, 7.0, or 7.4), and the availability of oxygen. In general, oxidation of ferrocytochrome c was favored by (1) low pH, (2) an oxidized state of the vanadium, (3) the presence of oxygen, and (4) more strongly binding ligands (desferrioxamine much greater than histidine = ATP greater than EDTA greater than albumin greater than aquo). Thus, at pH 6.0, desferrioxamine accelerated the V(V)-catalyzed ferrocytochrome c oxidation 160-fold aerobically, and 3500-fold anaerobically. In general, strongly binding ligands slowed oxidations, especially at higher pH. Desferrioxamine was unique among the five ligands in that it not only accelerated oxidation of ferrocytochrome c at pH 6.0, but at pH 7.4 the redox balance shifted to the point where it paradoxically reduced ferricytochrome c. V(V) is an improbable electron donor, but desferrioxamine will reduce cytochrome c, and V(V) accelerates this process. Oxidation of cytochrome c by V(V):desferrioxamine was faster anaerobically, and reduction by V(IV):desferrioxamine was faster aerobically. Although V(V) did not oxidize ferrocytochrome c at pH 7.4, V(IV) did, provided oxygen and desferrioxamine were both present. V(IV):desferrioxamine almost completely reduced ferricytochrome c, and this reduction was followed by a slow, progressive oxidation. This latter oxidation of cytochrome c is mediated by active species generated in the reaction between V(IV):desferrioxamine and oxygen, because none of these reagents alone can induce oxidation at a comparable rate. The mediating species were transient, and generated in reactions with oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
New complexes of the type [Cr(INH)2Cl2]Cl.2H2O, VO(INH)2Cl2 and TiO(INH)2Cl, where INH = isonicotinic acid hydrazide, have been prepared. The complexes were characterized by infrared and UV-vis spectroscopy, proton nuclear magnetic resonance (NMR) and elemental analyses, molar conductivity and x-ray powder diffraction measurements. For the Cr(III)-complex, the ligand was coordinated through its carbonyl group and amino nitrogen atom; for V(IV)-complex and Ti(III)-complex, the ligand was coordinated through its carbonyl oxygen and heterocyclic nitrogen, respectively. Octahedral geometry has been proposed for all the complexes. The complexes of Cr(III) and Ti(III) showed significant tuberculostatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号