首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of enzymatically generated reduced oxygen metabolites on the activity of hepatic microsomal glutathione S-transferase activity was studied to explore possible physiological regulatory mechanisms of the enzyme. Noradrenaline and the microsomal cytochrome P-450-dependent monooxygenase system were used to generate reduced oxygen species. When noradrenaline (greater than 0.1 mM) was incubated with rat liver microsomes in phosphate buffer (pH 7.4), an increase in microsomal glutathione S-transferase activity was observed, and this activation was potentiated in the presence of a NADPH-generating system; the glutathione S-transferase activity was increased to 180% of the control with 1 mM noradrenaline and to 400% with both noradrenaline and NADPH. Superoxide dismutase and catalase inhibited partially the noradrenaline-dependent activation of the enzyme. In the presence of dithiothreitol and glutathione, the activation of the glutathione S-transferase by noradrenaline, with or without NADPH, was not observed. In addition, the activation of glutathione S-transferase activity by noradrenaline and glutathione disulfide was not additive when both compounds were incubated together. These results indicate that the microsomal glutathione S-transferase is activated by reduced oxygen species, such as superoxide anion and hydrogen peroxide. Thus, metabolic processes that generate high concentrations of reduced oxygen species may activate the microsomal glutathione S-transferase, presumably by the oxidation of the sulfhydryl group of the enzyme, and this increased catalytic activity may help protect cells from oxidant-induced damage.  相似文献   

2.
The activities of rat glutathione transferases (GSTs) 3-3, 3-4, 4-4 in Class mu towards 1-chloro-2,4-dinitrobenzene (CDNB) but not 1,2-dichloro-4-nitrobenzene were increased up to 5-fold during preincubation with 0.4 mM xanthine and xanthine oxidase in 50 mM potassium phosphate, pH 7.8, containing 0.1 mM EDTA. The activated GST 3-4, purified by S-hexylglutathione affinity chromatography after the treatment, had a higher specific activity (130 units/mg) than that of the nontreated (35 units/mg), the Km and Vmax values for glutathione or CDNB also were increased. Other rat GSTs in Class alpha and pi were inactivated by the same treatment. In the presence of superoxide dismutase, the activation of GST 3-4 did not occur.  相似文献   

3.
4.
The present studies were carried out to characterize the nature of reactive oxygen species generated by the xanthine-xanthine oxidase system involved in the release of histamine by noncytotoxic and cytotoxic mechanisms. To distinguish secretory release from lytic release, mast cells were loaded with 51Cr and the release of 51Cr into the incubation medium was used as a measure of cell lysis. The secretory release of histamine was not inhibited by superoxide dismutase or catalase alone. However, together these agents inhibited the release. This suggests that the combination of superoxide and hydrogen peroxide can evoke secretory release. The lytic release of histamine, as monitored by concomitant release of 51Cr from mast cells at higher concentration of xanthine oxidase or longer periods of incubation, seems to be related to hydrogen peroxide production since catalase inhibited the cell lysis. Since it has been reported that exogenously added hydrogen peroxide at concentrations below 10 mM did not induce cell lysis, the lytic release, although hydrogen peroxide dependent, may not be due to its direct effect on the cell surface. The cell lysis observed in the xanthine-xanthine oxidase system seems to be brought about by a complex mechanism involving the interactions of hydrogen peroxide and superoxide with cellular components. These studies indicate that the beneficial effects of superoxide dismutase seen in biological systems may partly be due to inhibition of the secretory processes stimulated by superoxide.  相似文献   

5.
The nicotinamide adenine dinucleotide (NADH)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the xanthine oxidase (XOD) systems generate reactive oxygen species (ROS). In the present study, to characterize the difference between the two systems, the kinetics of ROS generated by both the NADH oxidase and XOD systems were analysed by an electron spin resonance (ESR) spin trapping method using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), 5-(diethoxyphosphoryl)-5-methyl-pyrroline N-oxide (DEPMPO) and 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). As a result, two major differences in ROS kinetics were found between the two systems: (i) the kinetics of (?)OH and (ii) the kinetics of hydrogen peroxide. In the NADH oxidase system, the interaction of hydrogen peroxide with each component of the enzyme system (NADPH, NADH oxidase and FAD) was found to generate (?)OH. In contrast, (?)OH generation was found to be independent of hydrogen peroxide in the XOD system. In addition, the hydrogen peroxide level in the NADPH-NADH oxidase system was much lower than measured in the XOD system. This lower level of free hydrogen peroxide is most likely due to the interaction between hydrogen peroxide and NADPH, because the hydrogen peroxide level was reduced by ~90% in the presence of NADPH.  相似文献   

6.
7.
The genetic toxicity of active oxygen species produced during the enzymic oxidation of xanthine has been investigated using Chinese hamster ovary (CHO) cells. Incubation of cells with xanthine plus xanthine oxidase resulted in extensive chromosome breakage and sister-chromatid exchange and gave a small increase in frequency of thioguanine-resistant cells (HGPRT test). Inclusion of superoxide dismutase or catalase in the xanthine/xanthine oxidase system inhibited chromosome breakage, whereas only catalase prevented SCE and mutant induction. It is concluded that hydrogen peroxide is responsible for most of the genetic effects observed in CHO cells exposed to xanthine/xanthine oxidase but that superoxide plays a key role in chromosome breakage.  相似文献   

8.
Product formation during the oxidation of xanthine oxidase has been examined directly by using cytochrome c peroxidase as a trapping agent for hydrogen peroxide and the reduction of cytochrome c as a measure of superoxide formation. When fully reduced enzyme is mixed with high concentrations of oxygen, 2 molecules of H2O2/flavin are produced rapidly, while 1 molecule of O2-/flavin is produced rapidly and another produced much more slowly. Time courses for superoxide formation and those for the absorbance changes due to enzyme oxidation were fitted successfully to the mechanism proposed earlier (Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V. (1974) J. Biol. Chem. 249, 4363-4382). In this scheme, each oxidative step is initiated by the very rapid and reversible formation of an oxygen.FADH2 complex (the apparent KD = 2.2 X 10(-4) M at 20 degrees C, pH 8.3). In the cases of 6- and 4-electron-reduced enzyme, 2 electrons are transferred rapidly (ke = 60 s-1) to generate hydrogen peroxide and partially oxidized xanthine oxidase. In the case of the 2-electron-reduced enzyme, only 1 electron is transferred rapidly and superoxide is produced. The remaining electron remains in the iron-sulfur centers and is removed slowly by a second order process (ks = 1 X 10(4) M-1 s-1). When the pH is decreased from 9.9 to 6.2, both the apparent KD for oxygen binding and the rapid rate of electron transfer are decreased about 20-fold. This result is suggestive of uncompetitive inhibition and implies that proton binding to the enzyme-flavin active site affects primarily the rate of electron transfer, not the formation of the initial oxygen complex.  相似文献   

9.
10.
Ascorbate reacts with methemoglobin to produce reactive oxygen species, most probably hydroxyl radicals. The main features of this system are: a) disappearance of ascorbate; b) consumption of oxygen with an ascorbate/O2 stoichiometry of 2:1; c) requirement of unliganded heme iron; d) formation of H2O2. The proposed mechanism involves an ascorbate-mediated interconversion of methemoglobin and oxy-hemoglobin, resulting in the production of H2O2. This product is decomposed by hemoglobin to produce hydroxyl radicals according to a Fenton-like reaction in which ascorbate recycles methemoglobin to hemoglobin. Alternative pathways of formation and of decomposition of H2O2 in this system appear to play a minor role.  相似文献   

11.
12.
Chemistry of active oxygen species   总被引:1,自引:0,他引:1  
  相似文献   

13.
The reaction of xanthine oxidase with molecular oxygen   总被引:9,自引:0,他引:9  
  相似文献   

14.
Mitochondrial damage by active oxygen species in vitro   总被引:1,自引:0,他引:1  
Under in vitro conditions involving formation of active oxygen species, rat liver mitochondria were found to undergo swelling, peroxidative decomposition of lipids, and distinct disorganization of ultrastructure. Supplementation with free radical scavengers such as superoxide dismutase (SOD), methionine, histidine, and tryptophan accorded considerable protection to the organelle. A possible correlation between oxygen radicals, membrane integrity, and calcium functions is indicated.  相似文献   

15.
The interaction of bisulfite with milk xanthine oxidase   总被引:1,自引:0,他引:1  
Bisulfite ion competitively inhibits xanthine oxidase activity. The ability of HSO3- to bind at the molybdenum center is controlled by pH due to a pKa of 6.91 for SO3(2-)/HSO3-. The Kd for the enzyme-bisulfite complex is 4.5 x 10(-5) M at pH 7.0 and 25 degrees C. The relative magnitude of extinction changes in the optical absorption spectra, the number of inhibitor ions reversibly bound, and the number of electrons required for complete bleaching of the visible spectrum of the milk xanthine oxidase-HSO3- complex were all dependent on the percentage of fully functional xanthine oxidase. Binding of HSO3- causes perturbations of the visible spectrum: the maximum extinction changes at 320 and 422 nm were calculated to be -4300 and -2150 M-1 cm-1, respectively. The stoichiometry of reversible binding was determined to be one molecule of HSO3-/active molybdenum center. Combined optical and EPR analyses of anaerobic dithionite titrations revealed that the relative redox potentials of the Mo6+/5+ and Mo5+/4+ couples decreased by approximately 35 and 45 mV on binding bisulfite, respectively. The finding that bisulfite has a profound effect on the redox properties of xanthine oxidase necessitates a re-evaluation of dithionite titrations previously carried out with this enzyme at neutral and low pH values since bisulfite produced as an oxidation product of dithionite binds to the enzyme during the course of titration.  相似文献   

16.
Between 15% and 20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.  相似文献   

17.
Many enzymes, represented by yeast glutamine synthetase, are inactivated and degraded in the presence of dithiothreitol (DTT), oxygen, and catalytic amounts of iron salts. The roles of DTT and iron can be replaced by ascorbate and copper, respectively. Experimental data suggest that reactive oxygen species, likely hydroxyl radicals, are generated locally around irons bound at specific sites on enzymes, and these species are responsible for the inactivation and degradation. Since many biochemicals are contaminated with metal salts in quantities sufficient for some hydroxyl radical formation to occur, the possibility of oxidative modification and degradation should be considered when an enzyme is exposed to DTT.  相似文献   

18.
Mitochondrial metabolism of reactive oxygen species   总被引:22,自引:0,他引:22  
Oxidative stress is considered a major contributor to etiology of both normal senescence and severe pathologies with serious public health implications. Mitochondria generate reactive oxygen species (ROS) that are thought to augment intracellular oxidative stress. Mitochondria possess at least nine known sites that are capable of generating superoxide anion, a progenitor ROS. Mitochondria also possess numerous ROS defense systems that are much less studied. Studies of the last three decades shed light on many important mechanistic details of mitochondrial ROS production, but the bigger picture remains obscure. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal. An integrative, systemic approach is applied to analysis of mitochondrial ROS metabolism, which is now dissected into mitochondrial ROS production, mitochondrial ROS removal, and mitochondrial ROS emission. It is suggested that mitochondria augment intracellular oxidative stress due primarily to failure of their ROS removal systems, whereas the role of mitochondrial ROS emission is yet to be determined and a net increase in mitochondrial ROS production in situ remains to be demonstrated.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 246–264.Original Russian Text Copyright © 2005 by Andreyev, Kushnareva, Starkov.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

19.
For a long time mitochondria have mainly been considered for their role in the aerobic energy production in eukaryotic cells, being the sites of the oxidative phosphorylation, which couples the electron transfer from respiratory substrates to oxygen with the ATP synthesis. Subsequently, it was showed that electron transfer along mitochondrial respiratory chain also leads to the formation of radicals and other reactive oxygen species, commonly indicated as ROS. The finding that such species are able to damage cellular components, suggested mitochondrial involvement in degenerative processes underlying several diseases and aging.More recently, a new role for mitochondria, as a system able to supply protection against cellular oxidative damage, is emerging. Experimental evidence indicates that the systems, evolved to protect mitochondria against endogenously produced ROS, can also scavenge ROS produced by other cellular sources. It is possible that this action, particularly relevant in physio-pathological conditions leading to increased cellular ROS production, is more effective in tissues provided with abundant mitochondrial population. Moreover, the mitochondrial dysfunction, resulting from ROS-induced inactivation of important mitochondrial components, can be attenuated by the cell purification from old ROS-overproducing mitochondria, which are characterized by high susceptibility to oxidative damage. Such an elimination is likely due to two sequential processes, named mitoptosis and mitophagy, which are usually believed to be induced by enhanced mitochondrial ROS generation. However, they could also be elicited by great amounts of ROS produced by other cellular sources and diffusing into mitochondria, leading to the elimination of the old dysfunctional mitochondrial subpopulation.  相似文献   

20.
Ultraweak chemiluminescence (CL) from bilirubin occurs in the presence of triplet oxygen and is stimulated by the addition of aldehydes. Active oxygen species also enhance bilirubin CL, in the absence of aldehydes. An inhibitory effect of active oxygen scavengers on the CL indicated that active oxygens generated from the decomposition of added hydrogen peroxide or from the xanthine-xanthine oxidase reaction contributed to the CL from bilirubin molecules. However, the contribution of singlet oxygen to the CL disappeared in the presence of formaldehyde. This suggested that the scission of tetrapyrrole bonds via a dioxetane intermediate or the production of triplet carbonyls from the oxidation of aldehydes by singlet oxygen was not involved in the CL, at least in the presence of formaldehyde. The spectrum of CL induced by the generation of active oxygen was the same as that from the aldehyde-enhanced CL reaction. We propose that the formation of a hydroperoxide (and/or hydroxide) bilirubin intermediate, but not a dioxetane, may be involved in the excitation of bilirubin molecules for CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号