首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transfected cell microarrays, arrays of mammalian cells expressing defined genes, offer enormous potential for the development of high-throughput cell-based detection technologies to monitor the presence of biological agents or environmental toxicants. The signals generated from these arrays are intimately linked to the efficiency of DNA uptake by the cells located on the micrometer-sized spots. However, quantitative analysis of the transfection efficiency on cellular microarrays has been limited. Further, little regard has been given to the role of the substrate in influencing the transfection efficiency of mammalian cells on transfected microarrays. In this report, we have quantified the transfection efficiency of mammalian cells on different microscope slide substrates. Using commercially available microscope slides bearing substrates that mediate cellular attachment (polystyrene, 3-aminopropylsilane, and poly-L-lysine), we have demonstrated the role of substrate hydrophobicity in determining the resulting spot size and the local DNA concentration when plasmid DNA is dispensed in a printing buffer containing gelatin and sucrose using a noncontact microarray printer. The mean spot diameter varied inversely with the substrate water contact angle (r2 = 0.970). Further, the relative local plasmid DNA concentration was a function of the mean spot diameter. The deposition of Rhodamine Red-labeled plasmid DNA revealed that, across all substrates, the average fluorescence signal within the spots varied inversely with the mean spot diameter (r2 = 0.976). The transfection efficiency of HEK 293T/17 cells varied in accord with the mean spot diameter, demonstrating that the uptake of DNA was a function of the local DNA concentration on each substrate.  相似文献   

2.
A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.  相似文献   

3.
Large-scale gene expression measurements with oligonucleotide microarrays have contributed tremendously to biological research. However, to distinguish between relevant expression changes and falsely identified positives, the source and magnitude of errors must be understood. Here, we report a source of biological variability in microarray experiments with stably transfected cell lines. Mouse embryonic fibroblast (MEF/3T3) and rat schwannoma (RT4) cell lines were generated to provide regulatable schwannomin expression. The expression levels of 29 samples from five different mouse embryonic fibroblast clonal cell lines and 18 samples from 3 RT4 cell lines were monitored with oligonucleotide microarrays. Using hierarchical clustering, we determined that the changes in gene expression induced by schwannomin overexpression were subtle when compared with those detected as a consequence of clonal selection during generation of the cell lines. The hierarchical clustering implies that significant alterations of gene expression were introduced during the transfection and selection processes. A total of 28 genes were identified by Kruskal-Wallis rank test that showed significant variation between clonal lines. Most of them were related to cytoskeletal function and signaling pathways. Based on these analyses, we recommend that replications of experiments with several selected cell lines are necessary to assess biological effects of induced gene expression.  相似文献   

4.
Critical issues in applications of self-assembled monolayers   总被引:2,自引:0,他引:2  
Molecular self-assembly of supported monolayers can produce a variety of structures with different types of surface functional groups and with varied topography. Such structural flexibility promises many applications. In addition, strategies for precision chemical patterning have evolved which expand the possibilities. Real applications of these monolayers will require precise control of structural features which in turn depends critically upon improved understanding of such factors as formation mechanisms and mixed composition phase stability. Recent advances show that such an understanding should evolve in the future.  相似文献   

5.
Carbohydrate microarrays are being developed in order to decipher the information content of the glycome. This postgenomic activity is necessary because of the complexity of protein biosynthesis and post-translational modifications that cannot currently be detected at the genome level. This review looks, in detail, at the experimental approaches that have been taken in the fabrication and preparation of carbohydrate microarrays, glycan arrays and glyco-chips. Tether structures, glycan solution preparation, detection methods and applications have been gathered together in a tabular format.  相似文献   

6.
Micropatterned materials were synthesised by photoimmobilising the sulphated hyaluronic acid, adequately functionalised with a photoreactive moiety, on glass substrates. Four different patterns (10, 25, 50 and 100 microns) were obtained. The spectroscopic and microscopic analysis of the microstructured surfaces revealed that the photoimmobilisation process was successful, demonstrating that the photomask was well reproduced on the sample surface. Analysis of endothelial cell behaviour on these micropatterned materials was performed in terms of adhesion, locomotion and orientation. Decreasing the stripe dimensions a more fusiform shape of the adhered endothelial cells was observed. At the same time the cell locomotion and orientation were increased. Furthermore, a photoimmobilisation of stripes of HyalS (10 and 100 microns) was performed on a continuous HyalS layer, in turn immobilised on glass substrate. Being excluded a different chemistry between the stripe and the substrate, the influence of topography on the behaviour of endothelia cells was thus envisaged.  相似文献   

7.
We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM), and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells.  相似文献   

8.
Wang S  Yin T  Zeng S  Che H  Yang F  Chen X  Shen G  Wu Z 《PloS one》2012,7(1):e30779

Background

The parasite Schistosoma japonicum causes schistosomiasis disease, which threatens human life and hampers economic and social development in some Asian countries. An important lesson learned from efforts to reduce the occurrence of schistosomiasis is that the diagnostic approach must be altered as further progress is made towards the control and ultimate elimination of the disease.

Methodology/Principal Findings

Using mixed self-assembled monolayer membrane (mixed SAM) technology, a mixture of mercaptopropionic acid (MPA) and mercaptoethanol (ME) was self-assembled on the surface of quartz crystals by gold-sulphur-bonds. Soluble egg antigens (SEA) of S. japonicum were then cross-linked to the quartz crystal using a special coupling agent. As compared with the traditional single self-assembled monolayer immobilization method, S. japonicum antigen (SjAg) immobilization using mixed self-assembled monolayers exhibits much greater immunoreactivity. Under optimal experimental conditions, the detection range is 1∶1500 to 1∶60 (infected rabbit serum dilution ratios). We measured several infected rabbit serum samples with varying S. japonicum antibody (SjAb) concentrations using both immunosensor and ELISA techniques and then produced a correlation analysis. The correlation coefficients reached 0.973.

Conclusions/Significance

We have developed a new, simple, sensitive, and reusable piezoelectric immunosensor that directly detects SjAb in the serum. This method may represent an alternative to the current diagnostic methods for S. japonicum infection in the clinical laboratory or for analysis outside the laboratory.  相似文献   

9.
This article presents a new technique to fabricate patterns of functional molecules surrounded by a coating of the inert poly(ethylene glycol) (PEG) on glass slides for applications in protein microarray technology. The chief advantages of this technique are that it is based entirely on standard lithography processes, makes use of glass slides employing surface chemistries that are standard in the microarray community, and has the potential to massively scale up the density of microarray spots. It is shown that proteins and antibodies can be made to self-assemble on the functional patterns in a microarray format, with the PEG coating acting as an effective passivating agent to prevent non-specific protein adsorption. Various standard surface chemistries such as aldehyde, epoxy and amine are explored for the functional layer, and it is conclusively demonstrated that only an amine-terminated surface satisfies all the process constraints imposed by the lithography process sequence. The effectiveness of this microarray technology is demonstrated by patterning fluorescent streptavidin and a fluorescent secondary antibody using the well-known and highly specific interaction between biotin and streptavidin.  相似文献   

10.
Naturally occurring hemin cofactor has been functionalized to introduce two terminal alkyne groups. This modified hemin has been successfully covalently attached to mixed self-assembled monolayers of alkanethiols and azide-terminated alkanethiols on gold electrodes using a Cu(I)-catalyzed 1,3-cycloaddition reaction. However these hemin-modified electrodes could not be used to reconstitute apomyoglobin on gold electrodes owing to the hydrophobicity of the alkane thiol self-assembled monolayer. Modification of existing techniques allowed covalent attachment of alkyne-terminated electroactive species onto mixed monolayers of azidothiols and carboxylatoalkanethiols on electrodes using the same Cu(I)-catalyzed 1,3-cycloaddition reaction. Apomyoglobin could be reconstituted using the hemin covalently attached to these hydrophilic electrodes. The electrochemical data, UV-vis absorption data, surface-enhanced resonance Raman spectroscopy data, and atomic force microscopy data indicate the presence of these modified myoglobin proteins on these electrodes. The direct attachment of the heme cofactor of these modified myoglobin proteins to the electrode allows fast electron transfer to the heme center from the electrode and affords efficient O(2)-reducing bioelectrodes under physiological conditions.  相似文献   

11.
The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.  相似文献   

12.
We have examined the initial phase of fibrin formation, thrombin-catalyzed fibrinopeptide cleavage, from adsorbed fibrinogen using surface plasmon resonance and liquid chromatography-mass spectrometry. Fibrinogen adsorption impaired thrombin-fibrinogen interactions compared to the interactions of thrombin with fibrinogen in solution. The properties of the underlying substrate significantly affected the extent and kinetics of fibrinopeptide cleavage, and the conversion of adsorbed fibrinogen to fibrin. Fibrinogen adsorbed on negatively charged surfaces (carboxyl-terminated self-assembled monolayers) released a smaller amount of fibrinopeptides, at a reduced rate relative to those of hydrophobic, hydrophilic, and positively charged surfaces (methyl-, hydroxyl-, and amine-terminated self-assembled monolayers, respectively). Additionally, the conversion of adsorbed fibrinogen to fibrin was comparatively inefficient at the negatively charged surface. These data correlated well with trends previously reported for fibrin proliferation as a function of surface properties. We conclude that thrombin interactions with adsorbed fibrinogen determine the extent of subsequent fibrin proliferation on surfaces.  相似文献   

13.
We designed a new efficient and reliable immunosensor and demonstrated its analytic performance to capture breast cancer MCF7 and T47D cells, under laminar flow, onto antibody-coated long alkylsilane self-assembled monolayers (SAMs) in a parallel plate flow chamber. The surface floor of the laminar flow chamber was grafted with an amino-terminated long alkyl chain spacer, 21-aminohenicosyl trichlorosilane (AHTS) followed by tethering a specific monoclonal antibody directed against the human epithelial cell adhesion molecule (EpCAM) antigen, which is overexpressed in primary breast cancer. Properties of the AHTS- and antibody-grafted surface floor were compared to that of surface floors coated with the short alkyl spacers 3-glycidoxy-propyl trimethoxysilane (GPTS) or 3-aminopropyl triethoxysilane (APTES) and antibodies. A theoretical model was constructed according to the geometry of the flow chamber in order to calculate the trajectories that would use cell flows. Cell capture experiments demonstrated that cell immobilization was optimized throughout the whole flow chamber. High cell capture was yielded on antibody-tethered long alkyl AHTS surface. This new procedure offers multiple advantages: a versatile tool readily applied to a panel of purified antibodies, an enrichment of cell immobilization using repetitive cell flow, and a stable capturing surface suitable for long term storage and handling.  相似文献   

14.
A detailed study of the immobilization of three differently sulfur-modified DNA receptors for biosensing applications is presented. The three receptors are DNA-(CH)n-SH-, DNA-(CH)n-SS-(CH)n-DNA, and DNA-(CH)n-SS-DMTO. Nanomechanical and surface plasmon resonance biosensors and fluorescence and radiolabelling techniques were used for the experimental evaluation. The results highlight the critical role of sulfur linker type in DNA self-assembly, affecting the kinetic adsorption and spatial distribution of DNA chains within the monolayer and the extent of chemisorption and physisorption. A spacer (mercaptohexanol, MCH) is used to evaluate the relative efficiencies of chemisorption of the three receptors by analysing the extent to which MCH can remove physisorbed molecules from each type of monolayer. It is demonstrated that –SH derivatization is the most suitable for biosensing purposes as it results in densely packed monolayers with the lowest ratio of physisorbed probes.  相似文献   

15.
A new protocol has been described for solid phase preparation of 3′- and 5′-aminooxylalkylated oligonucleotides using commercially available reagents. This involves attachment of linker 4 either with an LCAA-CPG support via succinoylation followed by synthesis (3′-aminooxyalkylated oligomers) or formation of its phosphoramidite 6 followed by coupling with desired oligomer (for generating 5′-aminooxyalkylated oligomers). Both the routes produced modified oligonucleotides in sufficiently high yields and purity (on HPLC) via conventional oligonucleotide synthesis on an automated synthesizer and deprotection step using aqueous ammonia (16 h, 60 °C). Aminooxyalkylated oligonucleotides were used to construct microarrays on glass surface (biochips). The performance of the biochips was evaluated by immobilizing modified oligonucleotides on epoxylated glass microslides under different sets of conditions with respect to pH, temperature and time. Further, the constructed microarrays were successfully used for detection of nucleotide mismatches and bacterial typhoid.  相似文献   

16.
We report the development of laser-scanning lithography (LSL), which employs a laser-scanning confocal microscope to pattern photoresists that can be utilized, for example, in the fabrication of masters for use in soft lithography. This convenient technique provides even exposure across the entire view field and facilitates accurate alignment of successive photoresist exposures. Features on the scale of 3 microm have been achieved to date with a 10x objective (NA 0.45). Virtual masks, instructions for laser irradiation, were drawn using the Region of Interest (ROI) function of a Zeiss LSM 510 microscope. These regions were then exposed to a 458 nm argon laser for 32 micros (0.9 mW/microm(2)). Differential interference contrast (DIC) imaging was utilized with a non-destructive 514 nm argon laser as an immediate quality check of each exposure, to align successive exposures, and to reduce chromatic aberration between imaging and exposure. Developed masters were replica-molded with poly(dimethylsiloxane) (PDMS); these masters were then utilized for microcontact printing of cell-adhesive self-assembled monolayers (SAMs) to demonstrate the utility of this process. Initial studies confirmed that human dermal fibroblast adhesion and spreading were limited to cell-adhesive SAM areas. LSL is a rapid, flexible, and readily available technique that will accelerate master design and preparation; moreover, it can be applied to additional forms of photolithography and photopolymerization for studies in cell biology, biomaterials design and evaluation, materials science, and surface chemistry.  相似文献   

17.
We are reporting on a novel approach for structured immobilisation of enzymes on gold surfaces modified with monolayers of functionalised alkylthiols. The formation of enzyme spots is achieved by shooting very small volumes of an appropriate enzyme solution (down to 100 pl) onto a thiol-monolayer modified gold surface using a micro-dispenser. Formation of enzyme patterns is obtained by moving the micro-dispenser relative to the modified gold surface using a micro-positioning device. Enzyme spots with typical lateral dimensions of 100 μm are obtained, but also, more complex structures, e.g. lines or meander structures, can be achieved by multiple droplets dispensed during the concomitant movement of the micro-dispenser. The first enzyme layer on top of the functionalised thiol-monolayer is subsequently covalently immobilised using either carbodiimide activation of carboxilic headgroups at the enzyme or via already introduced activated ester functions at the monolayer. Immobilised enzyme activities of glucose oxidase and lactate oxidase patterns have been characterised by means of scanning electrochemical microscopy. The product of the enzyme-catalysed reaction, H2O2, is detected with an micro-electrode in the presence of either or both substrates, glucose and lactate, leading to a visualisation of the corresponding enzyme pattern and the lateral enzymatic activity.  相似文献   

18.
A new method to graft Mn12 magnetic clusters to surface has been investigated. Starting from the preparation of a simple monolayer of aromatic sulfur based molecules organised on gold surface, a Mn12 functionalised with similar moieties is included into the bidimensional lattice. This new derivative has been fully characterised in its bulk structural and magnetic features and grafted into two types of preformed self-assembled monolayer on gold and characterised by means of scanning tunneling microscopy. A dependence of the morphology of such adsorbates on the starting monolayer, in terms of the homogeneity of the deposit and isolation of single SMMs has been found and discussed.  相似文献   

19.
The present study reports on the retention of conformational flexibility of a model allosteric protein upon immobilization on self-assembled monolayers (SAMs) on gold. Organothiolated SAMs of different compositions were utilized for adsorptive and covalent attachment of bovine liver glutamate dehydrogenase (GDH), a well-characterized allosteric enzyme. Sensitive fluorimetric assays were developed to determine immobilization capacity, specific activity, and allosteric properties of the immobilized preparations as well as the potential for repeated use and continuous catalytic transformations. The allosteric response of the free and immobilized forms towards ADP, L-leucine and high concentrations of NAD(+), some of the well-known activators for this enzyme, were determined and compared. The enzyme immobilized by adsorption or chemical binding responded similarly to the activators with a greater degree of activation, as compared to the free form. Also loss of activity involving the two immobilization procedures were similar, suggesting that residues essential for catalytic activity or allosteric properties of GDH remained unchanged in the course of chemical modification. A recently established method was used to predict GDH orientation upon immobilization, which was found to explain some of the experimental results presented. The general significance of these observations in connection with retention of native properties of protein structures upon immobilization on SAMs is discussed.  相似文献   

20.
The formation of self-assembled monolayers (SAMs) on gold surfaces containing an antigenic peptide (NANP)6 and HS(CH2)11OH, and the specific binding of a monoclonal antibody to these layers were investigated by surface plasmon resonance (SPR). Peptides were synthesized by solid-state phase synthesis and were linked either to cysteine or to an alkyl-thiol to allow covalent attachment to gold. The content of the peptide in the SAMs was systematically varied, and the binding properties of the monoclonal antibody were compared with those measured by microcalorimetry in solution. At a critical peptide concentration in the SAM an optimal antibody binding and complete surface coverage was attained. At lower peptide concentrations, the amount of adsorbed antibody decreased; at higher peptide concentrations, the binding constant decreased. These effects can be explained if the accessibility of the antigenic epitopes depends on the peptide density. Addition of free antigen induced the desorption of bound antibodies and allowed accurate measurements of the dissociation rate constant. Binding constants obtained from steady-state measurements and from measurements of the kinetic rate constants were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号