首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimpanzees (Pan troglodytes) and bonobos (P. paniscus) are our closest living relatives, with the human lineage diverging from the Pan lineage only around five to seven Mya, but possibly as early as eight Mya.1–2 Chimpanzees and bonobos even share genetic similarities with humans that they do not share with each other.2 Given their close genetic relationship to humans, both Pan species represent crucial living models for reconstructing our last common ancestor (LCA) and identifying uniquely human features. Comparing the similarities and differences of the two Pan is thus essential for constructing balanced models of human evolution.3  相似文献   

2.
Relationships of the takin (Budorcas taxicolor) and muskox (Ovibos moschatus) have been speculated upon for many years. Morphological and behavioral similarities between these species have led to suggestions that they are closely related. To test the hypothesis that characteristics shared by the takin and muskox stem from a recent common ancestor, we compared sequences of their mitochondrial cytochromebgenes with those of three other species of Caprinae. We present data that may support rejection of the hypothesis of recent common ancestry and suggest that similarities in behavior and morphology in these two species might be attributed to convergent evolution rather than shared phylogeny.  相似文献   

3.
Field observations were carried out on chimpanzees, pygmy chimpanzees and eastern gorillas. Since the communicative behaviors which appear in group ranging are closely related to the grouping of the animals and to the social structure, the communicative behaviors of group ranging were compared in the above three species in order to elucidate the common and different characters of their three much diversified social structures. The following conclusions were drawn: (1) the common ancestor ofGorilla andPan had the territorial call “hoot” and behavior of display, and males were antagonistic between each other in the society; (2) the common ancestral species did not have any special long distance cohesive calling: the society was a small compact one, moving on the ground; and (3) the social structure of the pygmy chimpanzee is very different from the common ancestral social structure when compared with those of the gorilla and chimpanzee, in that the pygmy chimpanzee has lost the behaviors of strong antagonistic character between adult males.  相似文献   

4.
The orchid bees constitute a clade of prominent insect pollinators distributed throughout the Neotropical region. Males of all species collect fragrances from natural sources, including flowers, decaying vegetation and fungi, and store them in specialized leg pockets to later expose during courtship display. In addition, orchid bees provide pollination services to a diverse array of Neotropical angiosperms when foraging for food and nesting materials. However, despite their ecological importance, little is known about the evolutionary history of orchid bees. Here, we present a comprehensive molecular phylogenetic analysis based on ~4.0 kb of DNA from four loci [cytochrome oxidase (CO1), elongation factor 1‐α (EF1‐α), arginine kinase (ArgK) and RNA polymerase II (Pol‐II)] across the entire tribe Euglossini, including all five genera, eight subgenera and 126 of the approximately 200 known species. We investigated lineage diversification using fossil‐calibrated molecular clocks and the evolution of morphological traits using disparity‐through‐time plots. In addition, we inferred past biogeographical events by implementing model‐based likelihood methods. Our dataset supports a new view on generic relationships and indicates that the cleptoparasitic genus Exaerete is sister to the remaining orchid bee genera. Our divergence time estimates indicate that extant orchid bee lineages shared a most recent common ancestor at 27–42 Mya. In addition, our analysis of morphology shows that tongue length and body size experienced rapid disparity bursts that coincide with the origin of diverse genera (Euglossa and Eufriesea). Finally, our analysis of historical biogeography indicates that early diversification episodes shared a history on both sides of Mesoamerica, where orchid bees dispersed across the Caribbean, and through a Panamanian connection, thus reinforcing the hypothesis that recent geological events (e.g. the formation of the isthmus of Panama) contributed to the diversification of the rich Neotropical biota. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 552–572.  相似文献   

5.

Background  

Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family.  相似文献   

6.
Bacteriophage of the family Leviviridae have played an important role in molecular biology where representative species, such as Qβ and MS2, have been studied as model systems for replication, translation, and the role of secondary structure in gene regulation. Using nucleotide sequences from the coat and replicase genes we present the first statistical estimate of phylogeny for the family Leviviridae using maximum-likelihood and Bayesian estimation. Our analyses reveal that the coliphage species are a monophyletic group consisting of two clades representing the genera Levivirus and Allolevivirus. The Pseudomonas species PP7 diverged from its common ancestor with the coliphage prior to the ancient split between these genera and their subsequent diversification. Differences in genome size, gene composition, and gene expression are shown with a high probability to have changed along the lineage leading to the Allolevivirus through gene expansion. The change in genome size of the Allolevivirus ancestor may have catalyzed subsequent changes that led to their current genome organization and gene expression. Received: 3 March 2000 / Accepted: 17 October 2000  相似文献   

7.
Most subterranean animals are assumed to have evolved from surface ancestors following colonization of a cave system; however, very few studies have raised the possibility of “subterranean speciation” in underground habitats (i.e., obligate cave‐dwelling organisms [troglobionts] descended from troglobiotic ancestors). Numerous endemic subterranean diving beetle species from spatially discrete calcrete aquifers in Western Australia (stygobionts) have evolved independently from surface ancestors; however, several cases of sympatric sister species raise the possibility of subterranean speciation. We tested this hypothesis using vision (phototransduction) genes that are evolving under neutral processes in subterranean species and purifying selection in surface species. Using sequence data from 32 subterranean and five surface species in the genus Paroster (Dytiscidae), we identified deleterious mutations in long wavelength opsin (lwop), arrestin 1 (arr1), and arrestin 2 (arr2) shared by a sympatric sister‐species triplet, arr1 shared by a sympatric sister‐species pair, and lwop and arr2 shared among closely related species in adjacent calcrete aquifers. In all cases, a common ancestor possessed the function‐altering mutations, implying they were already adapted to aphotic environments. Our study represents one of the first confirmed cases of subterranean speciation in cave insects. The assessment of genes undergoing pseudogenization provides a novel way of testing modes of speciation and the history of diversification in blind cave animals.  相似文献   

8.
Aim To test alternative biogeographic hypotheses related to the diversification of a montane mammal (Zapus hudsonius luteus) endemic to the American Southwest. Location South‐western United States. Methods We used statistical phylogeographic analyses of mitochondrial DNA (1512 bp; two genes) from 93 individuals from six geographic regions to test diversification hypotheses. Species distribution models of climate and fossil records were integrated to assess contemporary and historical distributions and barriers to gene flow. We calculated dates of divergence and examined historical demography using coalescent simulations. Results We documented monophyly of Z. h. luteus represented by 19 segregated haplotypes. Predicted current distribution generally coincided with known localities, while predicted paleodistributions suggested that this lineage was widespread throughout lower elevations of the American Southwest and on the Edwards Plateau (as documented by the fossil record). Population size did not change substantially during a westward shift in range that occurred in the last 100 k generations. Results supported fragmentation of a common ancestor during the Holocene as the most plausible explanation for genetic structure. Main conclusions Monophyletic Z. h. luteus reflects fragmentation of a common ancestor with recent (Holocene) upslope colonization of disjunct montane areas. We refute the hypotheses of in situ divergence or origins from a Colorado Piedmont ancestor. Instead, westward colonization from the Edwards Plateau during the Wisconsin followed by Holocene fragmentation, which serves as a generalized biogeographic hypothesis for species associated with mesic graminoid habitats in the American Southwest. Further exploration of these signatures using independent nuclear DNA is warranted. Key conservation implications are (1) Z. h. luteus is a monophyletic lineage on an independent evolutionary trajectory; (2) Z. h. luteus shared a recent common ancestor with Z. h. pallidus (not Z. h. preblei); (3) mtDNA does not reflect recent population declines; and (4) coalescent simulations and species distribution models reflect Holocene fragmentation.  相似文献   

9.
Enzyme electrophoresis was employed to ascertain the number of loci encoding plastid phosphoglucose isomerase (PGI) in species representing all sections of North American Coreopsis. Several species from each of the closely related genera Bidens, Coreocarpus, Cosmos, and Thelesperma were also examined. Species in nine of the 11 sections of North American Coreopsis have two isozymes for plastid PGI, and nearly all species examined in the four other genera also have two (one species has three) isozymes. Since most diploid vascular plants have one plastid PGI isozyme, a gene duplication probably occurred in an ancestor that is common to Coreopsis and the other four genera. That is, two isozymes represent the ancestral number for Coreopsis. The two sections (Electra and Anathysana) apparently lacking the duplication are closely related woody plants restricted largely to Mexico. One gene encoding plastid PGI ostensibly was silenced in a common ancestor of these two sections. This is concordant with other data suggesting a close relationship between the two sections, i.e., they appear to represent a monophyletic group. The electrophoretic data also indicate that 1) the enigmatic monotypic section Silphidium is more closely related to eastern North American sections and not derived from section Electra; and 2) section Anathysana is not ancestral to the three California sections Leptosyne, Pugiopappus, and Tuckermannia; rather, it represents a terminal element closely related to and possibly derived from section Electra.  相似文献   

10.
Comparisons of closely related species are needed to understand the fine‐scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non‐parasitic Lindenbergia philippensis (as an out‐group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species‐specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART‐related elements are much more widely distributed among angiosperms than previously known.  相似文献   

11.
不同生物类群包含的物种数目常存在巨大差异,这是生态学和生物学研究中普遍观察到的现象。然而,这一现象产生的原因仍然是未解之谜。从宏观进化的角度,进化时间假说和多样化速率假说是两个比较流行的假说。进化时间假说认为类群的演化时间越长,积累的物种丰富度越高;而多样化速率假说认为类群的净多样化速率越快,则其物种丰富度越高。为验证这两个假说,该文以一棵包含1 539个物种化石定年的虎耳草目系统发育树为基础,通过宏观进化分析获取了虎耳草目内15个科的物种形成和灭绝速率,并计算了每个科的平均多样化速率。结果表明:(1)虎耳草目的物种多样化速率有着增加的趋势,并且多样化速率的增加主要出现在温带和高山类群,如茶藨子科、景天科和芍药科等。(2)采用系统发育广义最小二乘模型(PGLS)和线性回归模型(LM)结果表明,虎耳草目15个科的物种丰富度与科的分化时间和科内物种的最近共同祖先年龄都没有显著相关关系,而与净多样化速率显著正相关(R2 =0.380,P<0.05)。该研究支持了多样化速率假说,认为不同科的净多样化速率的差异是导致虎耳草目科间物种数目差异的主要原因之一。全球气候变冷...  相似文献   

12.
The stonefly genus Siphonoperla Zwick, 1967 (Chloroperlidae) ranges from the Atlas Mountains of North Africa, throughout Europe and east to the Lesser Caucasus Mountains in Armenia. Systematic relationships within the genus are unknown. We provide the first molecular phylogenetic reconstruction of the genus, based on sequence variation of 1348 bp of the mitochondrial cytochrome c oxidase subunit I gene and relate this phylogeny to a few key morphological features as well as zoogeographical perspectives. A total of 15 taxa (32 individuals), including four outgroup species (Chloroperla Newman, 1836 and Xanthoperla Zwick, 1967 ) were screened. Monophyly of Siphonoperla, as well as each purported taxon was supported, with net pairwise distances ranging from 0.7% to 13.7%. Within‐taxon variability ranged from 0% to 6.2%, whereby the upper value relates to Siphonoperla torrentium Pictet, 1841 represented in our sample by three allopatric subspecific taxa. These taxa, displayed as a polytomy with an estimated time to the most recent common ancestor of about 5.4 Myr, are also shown to have distinct genitalia. These data could be used to support a species‐level distinction for the three subspecific taxa. Siphonoperla ranged from 13% (Xanthoperla) to 16.2% (Chloroperla) divergent from the outgroup genera. The recently described Siphonoperla ottomoogi, Graf, 2008 from Austria is not closely related to the sympatric Siphonoperla montana Pictet, 1841 and is a minimum of 7.8% divergent from congenerics, supporting its status as a micro‐endemic relict surviving on the edge of Alpine glaciation throughout the Pleistocene. Overall, the genus shows the highest levels of diversification in the Mediterranean and Southeast regions whereby at least some of the species found in Central Europe today may have persisted there in peri‐glacial refugia throughout the Pleistocene.  相似文献   

13.
Little is known about the natural history of the Sphaerodactylus species endemic to the three islands located in the Mona Passage separating the Greater Antillean islands of Hispaniola and Puerto Rico. In this study, parts of two mitochondrial genes, 16S rRNA and 12S rRNA, were sequenced to determine the relationships between the sphaerodactylids that live in the Mona Passage and other Caribbean species from the same genus. While the main goal was to identify the biogeographical origin of these species, we also identified a genetically distinct type of dwarf gecko that warrants future evaluation as a possible new species. According to the reconstructed phylogenies, we propose a stepwise model of colonization wherein S. nicholsi from southwestern Puerto Rico or a very close ancestor gave rise through a founder event to Sphaerodactylus monensis on Mona Island. In a similar fashion, S. monensis or a very close ancestor on Mona Island gave rise to S. levinsi on Desecheo Island. This study also suggests that the most recent common ancestor between the species from the islands in the Mona Passage and Puerto Rico existed approximately 3 MYA.  相似文献   

14.
15.
Detailed comparisons of the postcranium, cranium, and dentition of Pan paniscus, Pan troglodytes, and Homo reveal that except for slight differences in fore- and hindlimb proportions and the morphology of the shoulder, the postcranium of the two species of Pan are allometrically scaled variants of the same animal and one does not resemble Homo more than the other. Nor does the postcranium of one species of Pan resemble Australopithecus more closely than the other when the effects of body size are controlled. The over all morphological pattern of the skull and teeth of the two chimpanzees is clearly different, however, but both are about equally distinct from the earliest known members of the family Hominidae.  相似文献   

16.
Members of the family Pteropodidae, also known as Old World fruit bats, are represented in Africa by 14 genera and 44 species. Here, we sequenced 67 complete mitochondrial genomes from African and Asian pteropodids to better understand the evolutionary history of the subfamily Rousettinae, which includes most of the African species. An increased frequency of guanine to adenine transitions is detected in the mtDNA genomes of Macroglossus sobrinus and all species of Casinycteris and Scotonycteris. Our phylogenetic and molecular dating analyses based on 126 taxa and 15,448 characters indicate a low signal for deep relationships within the family, suggesting a rapid diversification during the Late Oligocene period of “warming.” Within the subfamily Rousettinae, most nodes are highly supported by our different analyses (all nucleotide sites, SuperTRI analyses of a sliding window, transversions only, coding genes only, and amino acid sequences). The results indicate the existence of four tribes: Rousettini—distributed from Africa through Mediterranean region and South Asia to South-East Asia; Eonycterini—found in Asia; and Epomophorini and Scotonycterini—restricted to sub-Saharan Africa. Although most interspecies relationships are highly supported, three parts of the Rousettinae mitochondrial tree are still unresolved, suggesting rapid diversification: (a) among the three subtribes Epomophorina (Epomophorus sensu lato, i.e., including Micropteropus, Epomops, Hypsignathus, Nanonycteris), Plerotina (Plerotes), and Myonycterina (Myonycteris, Megaloglossus) in the Late Miocene; (b) among Epomops, Hypsignathus, and other species of Epomophorina at the Pliocene–Pleistocene boundary; and (c) among Myonycteris species in the Early Pleistocene. Within the Epomophorini, Stenonycteris lanosus emerged first, suggesting that lingual echolocation may have appeared in the common ancestor of Epomophorini and Rousettini. Our analyses suggest that multiple events of mtDNA introgression occurred within the Epomophorus species complex during the Pleistocene.  相似文献   

17.
Summary The nucleotide sequences of 5S rRNAs from three protozoa,Bresslaua vorax, Euplotes woodruffi andChlamydomonas sp. have been determined and aligned together with the sequences of 12 protozoa species including unicellular green algae already reported by the authors and others. Using this alignment, a phylogenic tree of the 15 species of protozoa has been constructed. The tree suggests that the ancestor for protozoa evolved at an early time of eukaryotic evolution giving two major groups of organisms. One group, which shares a common ancestor with vascular plants, contains a unicellular green flagellate (Chlamydomonas) and unicellular green algae. The other group, which shares a common ancestor with the multicellular animals, includes various flagellated protozoa (includingEuglena), ciliated protozoa and slime molds. Most of these protozoa appear to have separated from one another at a fairly early period of eukaryotic evolution.  相似文献   

18.
The lichen-forming genus Parmelia Acharius occurs worldwide but its centre of distribution is in the northern hemisphere and it is widespread in boreal-temperate Eurasia and North America. Recent molecular work on Parmelia has identified phylogenetic relationships within two major groups of the genus: P. saxatilis s. lat. and P. sulcata s. lat. However, little is known about the diversification and historical biogeography of these groups. Here we have used a dataset of two genetic markers and 64 samples to estimate phylogenetic relationships within Parmelia. The dated phylogeny provides evidence for major diversification during the Neogene and Pleistocene. These diversification events are probably correlated with climatic changes during these periods. Evidence of gene flow within species between populations from North America and Europe has been found in three species: P. sulcata Taylor, P. saxatilis (L.) Acharius and P. barrenoae Divakar, M.C. Molina & A. Crespo. Cryptic species recently segregated on the basis of molecular differences (P. encryptata A. Crespo, Divakar & M.C. Molina vs. P. sulcata and P. saxatilis vs. P. mayi Divakar, A. Crespo & M.C. Molina) do not share a common ancestor. Moreover, the P. saxatilis complex is remarkably diverse. Two morphotypes of P. saxatilis s. lat. were shown to represent independent monophyletic lineages. Consequently, two species (P. sulymae Goward, Divakar, & M.C. Molina & A. Crespo and P. imbricaria Goward, Divakar, M.C. Molina & A. Crespo) are newly described here.  相似文献   

19.
Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using the methods of Fitch-Margoliash and neighbor-joining on a matrix of Nei's unbiased genetic distances for all pairs of species. Results of a relative-rate test indicate changes in two-dimensional electrophoresis data are constant among all South American felids with respect to a hyena outgroup. Allelic frequencies were transformed to discrete character states for maximum parsimony analysis. Phylogenetic reconstruction indicates a major split occurred approximately 5–6 million years ago, leading to three groups within the ocelot lineage. The earliest divergence led to Leopardus tigrina, followed by a split between an ancestor of an unresolved trichotomy of three species (Oncifelis guigna, O. geoffroyi, and Lynchaduris colocolo) and a recent common ancestor of Leopardus pardalis and L. wiedii. The results suggest that modern South American felids are monophyletic and evolved rapidly after the formation of the Panama land bridge between North and South America.Correspondence to: J. Pecon Slattery  相似文献   

20.
The higher‐level phylogeny of Pentatomomorpha, the second largest infraorder of true bugs (Hemiptera: Heteroptera), which includes many important agriculture and forestry pests, has been debated for decades. To investigate the phylogeny and evolutionary history of Pentatomomorpha, we assembled new mitochondrial genomes for 46 species through next‐generation sequencing of pooled genomic DNA. Based on a much broader taxon sampling than available previously, Bayesian analyses using a site‐heterogeneous mixture model (CAT+GTR) resolved the higher‐level phylogeny of Pentatomomorpha as (Aradoidea + (Pentatomoidea + (Coreoidea + (Lygaeoidea + Pyrrhocoroidea)))). There was a transition from trnT/trnP to trnP/trnT in the common ancestor of Pyrrhocoroidea, which indicates that this gene rearrangement could be an autapomorphy for Pyrrhocoroidea. Divergence time analyses estimated that Pentatomomorpha originated c. 242 Ma in the Middle Triassic, and most of the recognized superfamilies originated during the Middle Jurassic to Early Cretaceous. The diversification of families within Pentatomomorpha largely coincided with the radiation of angiosperms during the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号