首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins of the Omp85 family chaperone the membrane insertion of β‐barrel‐shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear‐encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N‐terminal polypeptide transport‐associated (POTRA) domains and a C‐terminal membrane‐embedded β‐barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β‐barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75‐V, which is consistent with the phylogenetic clustering of P39 in the Toc75‐V rather than the Toc75‐III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75‐III, Toc75‐V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391–1401. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Omp85 is a protein found in Gram-negative bacteria where it serves to integrate proteins into the bacterial outer membrane. Members of the Omp85 family of proteins are defined by the presence of two domains: an N-terminal, periplasmic domain rich in POTRA repeats and a C-terminal beta-barrel domain embedded in the outer membrane. The widespread distribution of Omp85 family members together with their fundamental role in outer membrane assembly suggests the ancestral Omp85 arose early in the evolution of prokaryotic cells. Mitochondria, derived from an ancestral bacterial endosymbiont, also use a member of the Omp85 family to assemble proteins in their outer membranes. More distant relationships are seen between the Omp85 family and both the core proteins in two-partner secretion systems and the Toc75 family of protein translocases found in plastid outer envelopes. Aspects of the ancestry and molecular architecture of the Omp85 family of proteins is providing insight into the mechanism by which proteins might be integrated and assembled into bacterial outer membranes.  相似文献   

3.
Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16‐stranded transmembrane β barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner β‐barrel wall. The membrane‐proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the β barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.  相似文献   

4.
β‐barrel‐shaped outer membrane proteins (OMPs) ensure regulated exchange of molecules across the cell‐wall of Gram‐negative bacteria. They are synthesized in the cytoplasm and translocated across the plasma membrane via the SEC translocon. In the periplasm, several proteins participate in the transfer of OMPs to the outer membrane‐localized complex catalyzing their insertion. This process has been described in detail for proteobacteria and some molecular components are conserved in cyanobacteria. For example, Omp85 proteins that catalyze the insertion of OMPs into the outer membrane exist in cyanobacteria as well. In turn, SurA and Skp involved in OMP transfer from plasma membrane to Omp85 in E. coli are likely replaced by Tic22 in cyanobacteria. We describe that anaTic22 functions as periplasmic holdase for OMPs in Anabaena sp. PCC 7120 and provide evidence for the process of substrate delivery to anaOmp85. AnaTic22 binds to the plasma membrane with specificity for phosphatidylglycerol and monogalactosyldiacylglycerol. Substrate recognition induces membrane dissociation and interaction with the N‐terminal POTRA domain of Omp85. This leads to substrate release by the interaction with a proline‐rich domain and the first POTRA domain of Omp85. The order of events during OMP transfer from plasma membrane to Omp85 in cyanobacteria is discussed.  相似文献   

5.
Proteins of the Omp85 family are conserved in all kingdoms of life. They mediate protein transport across or protein insertion into membranes and reside in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. Omp85 proteins contain a C-terminal transmembrane β-barrel and a soluble N terminus with a varying number of polypeptide-transport-associated or POTRA domains. Here we investigate Omp85 from the cyanobacterium Anabaena sp. PCC 7120. The crystallographic three-dimensional structure of the N-terminal region shows three POTRA domains, here named P1 to P3 from the N terminus. Molecular dynamics simulations revealed a hinge between P1 and P2 but in contrast show that P2 and P3 are fixed in orientation. The P2-P3 arrangement is identical as seen for the POTRA domains from proteobacterial FhaC, suggesting this orientation is a conserved feature. Furthermore, we define interfaces for protein-protein interaction in P1 and P2. P3 possesses an extended loop unique to cyanobacteria and plantae, which influences pore properties as shown by deletion. It now becomes clear how variations in structure of individual POTRA domains, as well as the different number of POTRA domains with both rigid and flexible connections make the N termini of Omp85 proteins versatile adaptors for a plentitude of functions.  相似文献   

6.
Omp85 proteins are essential proteins located in the bacterial outer membrane. They are involved in outer membrane biogenesis and assist outer membrane protein insertion and folding by an unknown mechanism. Homologous proteins exist in eukaryotes, where they mediate outer membrane assembly in organelles of endosymbiotic origin, the mitochondria and chloroplasts. We set out to explore the homologous relationship between cyanobacteria and chloroplasts, studying the Omp85 protein from the thermophilic cyanobacterium Thermosynechococcus elongatus. Using state-of-the art sequence analysis and clustering methods, we show how this protein is more closely related to its chloroplast homologue Toc75 than to proteobacterial Omp85, a finding supported by single channel conductance measurements. We have solved the structure of the periplasmic part of the protein to 1.97 Å resolution, and we demonstrate that in contrast to Omp85 from Escherichia coli the protein has only three, not five, polypeptide transport-associated (POTRA) domains, which recognize substrates and generally interact with other proteins in bigger complexes. We model how these POTRA domains are attached to the outer membrane, based on the relationship of Omp85 to two-partner secretion system proteins, which we show and analyze. Finally, we discuss how Omp85 proteins with different numbers of POTRA domains evolved, and evolve to this day, to accomplish an increasing number of interactions with substrates and helper proteins.  相似文献   

7.
We report the first 1H, 13C and 15N chemical shift assignments and secondary structure of the Escherichia coli YaeT POTRA domain; a domain found in the Omp85 family of proteins which is critical for insertion and folding of outer membrane proteins in Gram-negative bacteria.  相似文献   

8.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

9.
Bos MP  Robert V  Tommassen J 《EMBO reports》2007,8(12):1149-1154
beta-Barrel proteins are present in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. The central component of their assembly machinery is called Omp85 in bacteria. Omp85 is predicted to consist of an integral membrane domain and an amino-terminal periplasmic extension containing five polypeptide-transport-associated (POTRA) domains. We have addressed the function of these domains by creating POTRA domain deletions in Omp85 of Neisseria meningitidis. Four POTRA domains could be deleted with only slight defects in Omp85 function. Only the most carboxy-terminal POTRA domain was essential, as was the membrane domain. Thus, similar to the mitochondrial Omp85 homologue, the functional core of bacterial Omp85 consists of its membrane domain and a single POTRA domain, that is, POTRA5.  相似文献   

10.
11.
Chromalveolates are a diverse group of protists that include many ecologically and medically relevant organisms such as diatoms and apicomplexan parasites. They possess plastids generally surrounded by four membranes, which evolved by engulfment of a red alga. Today, most plastid proteins must be imported, but many aspects of protein import into complex plastids are still cryptic. In particular, how proteins cross the third outermost membrane has remained unexplained. We identified a protein in the third outermost membrane of the diatom Phaeodactylum tricornutum with properties comparable to those of the Omp85 family. We demonstrate that the targeting route of P. tricornutum Omp85 parallels that of the translocation channel of the outer envelope membrane of chloroplasts, Toc75. In addition, the electrophysiological properties are similar to those of the Omp85 proteins involved in protein translocation. This supports the hypothesis that P. tricornutum Omp85 is involved in precursor protein translocation, which would close a gap in the fundamental understanding of the evolutionary origin and function of protein import in secondary plastids.  相似文献   

12.
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid‐localized proteins that perform essential functions in leaf growth and development. A large‐scale screen previously allowed us to isolate ethyl methanesulfonate‐induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7‐1 (anu7‐1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic‐lethal mutations. ANU7 encodes a plant‐specific protein that contains a domain similar to the central cysteine‐rich domain of DnaJ proteins. The observed genetic interaction of anu7‐1 with a loss‐of‐function allele of GENOMES UNCOUPLED1 suggests that the anu7‐1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7‐1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid‐encoded genes, we found that anu7‐1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.  相似文献   

13.
  • The EGY3 protein is a homologue of site‐2 proteases, which are intramembrane zinc metalloproteases. EGY3 itself lacks proteolytic activity due to the absence of a zinc‐binding motif. Plentiful evidence indicates that such intramembrane ‘pseudoproteases’ play significant roles in many diverse processes occurring within the cell. However, the physiological functions of EGY3, as well as its subcellular localization, remain unknown.
  • The subcellular localization of EGY3 protein was investigated using Arabidopsis thaliana protoplasts transformed with EGY3‐GFP fusion protein, and immunoblot experiments using the total leaf protein extract, as well as highly purified chloroplasts and fractions of stroma, envelope and thylakoid membrane proteins. The physiological role of EGY3 was studied using two A. thaliana mutant lines devoid of EGY3 protein. Chlorophyll a fluorescence measurement was performed and the egy3 mutant sensitivity to photoinhibition was investigated. Additionally, the abundance of thylakoid membrane complexes was established using blue native gel electrophoresis.
  • We present experimental evidence for thylakoid membrane localization of the EGY3 protein.
  • We show that egy3 mutants display increased value of the non‐photochemical quenching parameter and significantly slower recovery rate after photoinhibitory treatment. This was associated with a decrease in the level of proteases involved in photosystem II recovery, Deg1 and FtsH2/8.
  相似文献   

14.
15.
16.
17.
The Omp85/YaeT family of proteins, which are conserved from bacteria to human, catalyzes insertion and assembly of proteins in the outer membrane. The structure consists of a transmembrane beta-barrel domain and a soluble polypeptide-transport-associated (POTRA) domain. The POTRA domain is critical for substrate recognition and perhaps substrate folding, while the beta-barrel domain assists in membrane insertion. The resolution of the crystal structure of the POTRA domain of the Escherichia coli YaeT protein provides a possible molecular mechanism by which the diverse group of substrates is recognized. Knowledge gained from the crystal structure may also spur the development of a novel class of chemotherapeutic inhibitors.  相似文献   

18.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   

19.
  • The prevention of Botrytis cinerea infection and the study of grape seedlessness are very important for grape industries. Finding correlated regulatory genes is an important approach towards understanding their molecular mechanisms.
  • Ethylene responsive factor (ERF) gene family play critical roles in defence networks and the growth of plants. To date, no large‐scale study of the ERF proteins associated with pathogen defence and ovule development has been performed in grape (Vitis vinifera L.). In the present study, we identified 113 ERF genes (VvERF) and named them based on their chromosome locations. The ERF genes could be divided into 11 groups based on a multiple sequence alignment and a phylogenetic comparison with homologues from Arabidopsis thaliana. Synteny analysis and Ka/Ks ratio calculation suggested that segmental and tandem duplications contributed to the expansion of the ERF gene family. The evolutionary relationships between the VvERF genes were investigated by exon–intron structure characterisation, and an analysis of the cis‐acting regulatory elements in their promoters suggested potential regulation after stress or hormone treatments.
  • Expression profiling after infection with the fungus, B. cinerea, indicated that ERF genes function in responses to pathogen attack. In addition, the expression levels of most ERF genes were much higher during ovule development in seedless grapes, suggesting a role in ovule abortion related to seedlessness.
  • Taken together, these results indicate that VvERF proteins are involved in responses to Botrytis cinerea infection and in grape ovule development. This information may help guide strategies to improve grape production.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号