首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular potassium (K+) homeostasis, which is crucial for plant survival in saline environments, is modulated by K+ channels and transporters. Some members of the high‐affinity K+ transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high‐salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K+ and considerably more Na+ in both shoots and roots, and had a significantly lower K+ net uptake rate but higher Na+ uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K+ uptake‐deficient yeast and Arabidopsis revealed that OsHAK21 possesses K+ transporter activity. These results demonstrate that OsHAK21 may mediate K+ absorption by the plasma membrane and play crucial roles in the maintenance of the Na+/K+ homeostasis in rice under salt stress.  相似文献   

2.
The NHX‐type cation/H+ transporters in plants have been shown to mediate Na+(K+)/H+ exchange for salinity tolerance and K+ homoeostasis. In this study, we identified and characterized two NHX homologues, HtNHX1 and HtNHX2 from an infertile and salinity tolerant species Helianthus tuberosus (cv. Nanyu No. 1). HtNHX1 and HtNHX2 share identical 5′‐ and 3′‐UTR and coding regions, except for a 342‐bp segment encoding 114 amino acids (L272 to Q385) which is absent in HtNHX2. Both hydroponics and soil culture experiments showed that the expression of HtNHX1 or HtNHX2 improved the rice tolerance to salinity. Expression of HtNHX2, but not HtNHX1, increased rice grain yield, harvest index, total nutrient uptake under K+‐limited salt‐stress or general nutrient deficiency conditions. The results provide a novel insight into NHX function in plant mineral nutrition.  相似文献   

3.
Abiotic stresses are among the major limiting factors for plant growth and crop productivity. Among these, salinity is one of the major risk factors for plant growth and development in arid to semi-arid regions. Cultivation of salt tolerant crop genotypes is one of the imperative approaches to meet the food demand for increasing population. The current experiment was carried out to access the performance of different rice genotypes under salinity stress and Zinc (Zn) sources. Four rice genotypes were grown in a pot experiment and were exposed to salinity stress (7 dS m−1), and Zn (15 mg kg−1 soil) was applied from two sources, ZnSO4 and Zn-EDTA. A control of both salinity and Zn was kept for comparison. Results showed that based on the biomass accumulation and K+/Na+ ratio, KSK-133 and BAS-198 emerged as salt tolerant and salt sensitive, respectively. Similarly, based on the Zn concentration, BAS-2000 was reported as Zn-in-efficient while IR-6 was a Zn-efficient genotype. Our results also revealed that plant growth, relative water content (RWC), physiological attributes including chlorophyll contents, ionic concentrations in straw and grains of all rice genotypes were decreased under salinity stress. However, salt tolerant and Zn-in-efficient rice genotypes showed significantly higher shoot K+ and Zn concentrations under saline conditions. Zinc application significantly alleviates the harmful effects of salinity by improving morpho-physiological attributes and enhancing antioxidant enzyme activities, and the uptake of K and Zn. The beneficial effect of Zn was more pronounced in salt-tolerant and Zn in-efficient rice genotypes as compared with salt-sensitive and Zn-efficient genotypes. In sum, our results confirmed that Zn application increased overall plant’s performance under saline conditions, particularly in Zn in-efficient and tolerant genotypes as compared with salt-sensitive and Zn efficient rice genotypes.  相似文献   

4.
Evelin H  Giri B  Kapoor R 《Mycorrhiza》2012,22(3):203-217
The study aimed to investigate the effects of an AM fungus (Glomus intraradices Schenck and Smith) on mineral acquisition in fenugreek (Trigonella foenum-graecum) plants under different levels of salinity. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl salinity (0, 50, 100, and 200 mM NaCl). Plant tissues were analyzed for different mineral nutrients. Leaf senescence (chlorophyll concentration and membrane permeability) and lipid peroxidation were also assessed. Under salt stress, M plants showed better growth, lower leaf senescence, and decreased lipid peroxidation as compared to NM plants. Salt stress adversely affected root nodulation and uptake of NPK. This effect was attenuated in mycorrhizal plants. Presence of the AM fungus prevented excess uptake of Na+ with increase in NaCl in the soil. It also imparted a regulatory effect on the translocation of Na+ ions to shoots thereby maintaining lower Na+ shoot:root ratios as compared to NM plants. Mycorrhizal colonization helped the host plant to overcome Na+-induced Ca2+ and K+ deficiencies. M plants maintained favorable K+:Na+, Ca2+:Na+, and Ca2+:Mg2+ ratios in their tissues. Concentrations of Cu, Fe, and Zn2+ decreased with increase in intensity of salinity stress. However, at each NaCl level, M plants had higher concentration of Cu, Fe, Mn2+, and Zn2+ as compared to NM plants. M plants showed reduced electrolyte leakage in leaves as compared to NM plants. The study suggests that AM fungi contribute to alleviation of salt stress by mitigation of NaCl-induced ionic imbalance thus maintaining a favorable nutrient profile and integrity of the plasma membrane.  相似文献   

5.
  • Accumulation of NaCl in soil causes osmotic stress in plants, and sodium (Na+) and chloride (Cl?) cause ion toxicity, but also reduce the potassium (K+) uptake by plant roots and stimulate the K+ efflux through the cell membrane. Thus, decreased K+/Na+ ratio in plant tissue lead us to hypothesise that elevated levels of K+ in nutrient medium enhance this ratio in plant tissue and cytosol to improve enzyme activation, osmoregulation and charge balance.
  • In this study, wheat was cultivated at different concentrations of K+ (2.2, 4.4 or 8.8 mm ) with or without salinity (1, 60 or 120 mm NaCl) and the effects on growth, root and shoot Na+ and K+ distribution and grain yield were determined. Also, the cytosolic Na+ concentration was investigated, as well as photosynthesis rate and water potential.
  • Salinity reduced fresh weight of both shoots and roots and dry weight of roots. The grain yield was significantly reduced under Na+ stress and improved with elevated K+ fertilisation. Elevated K+ level during cultivation prevented the accumulation of Na+ into the cytosol of both shoot and root protoplasts. Wheat growth at vegetative stage was transiently reduced at the highest K+ concentration, perhaps due to plants' efforts to overcome a high solute concentration in the plant tissue, nevertheless grain yield was increased at both K+ levels.
  • In conclusion, a moderately elevated K+ application to wheat seedlings reduces tissue as well as cytosolic Na+ concentration and enhances wheat growth and grain yield by mitigating the deleterious effects of Na+ toxicity.
  相似文献   

6.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

7.
To keep pace with ever growing global population, progressive and sustained increase in rice production is necessary, especially in areas with extremely variable climatic conditions, where rice crop suffers from numerous abiotic stresses including salinity. Designing an effective phenotyping strategy requires thorough understanding of plant survival under stress. The investigation was carried out with four rice cultivars namely FR13A, IR42, Rashpanjor, and Pokkali that differed in salinity tolerance. The study showed that a genotype with initial vigour had some advantage in preserving shoot biomass under salt stress. Though both FR13A and IR42 showed sensitivity to salinity, FR13A with higher initial biomass maintained greater dry weight under saline condition. Increase of Na+:K+ ratio under salinity, due to accelerated absorption of Na+ and lesser absorption of K+ compared to control, was considerably higher in susceptible (118–200 %) than in tolerant (33–48 %) genotypes. While Na+ concentration in shoot increased significantly in both tolerant and susceptible genotypes, decrease in shoot K+ content was noticed only in susceptible genotypes. The imbalance of Na+ and K+ contents led to increased H2O2 production, causing greater peroxidation of membrane lipids and reduction in chlorophyll content and CO2 photosynthetic rate. Certain chlorophyll fluorescence parameters could distinguish between salinity tolerant and sensitive genotypes. To protect the plant from oxidative damage, several enzymatic and nonenzymatic antioxidants such as ascorbate were involved. The genotypes with capacity to assemble antioxidant enzymes in time could detoxify the reactive oxygen species more efficiently, leading to greater protection and reduced impact of salt stress.  相似文献   

8.
Soil salinity restricts plant growth and productivity. Na+ represents the major ion causing toxicity because it competes with K+ for binding sites at the plasma membrane. Inoculation with arbuscular mycorrhizal fungi (AMF) can alleviate salt stress in the host plant through several mechanisms. These may include ion selection during the fungal uptake of nutrients from the soil or during transfer to the host plant. AM benefits could be enhanced when native AMF isolates are used. Thus, we investigated whether native AMF isolated from an area with problems of salinity and desertification can help maize plants to overcome the negative effects of salinity stress better than non‐AM plants or plants inoculated with non‐native AMF. Results showed that plants inoculated with two out the three native AMF had the highest shoot dry biomass at all salinity levels. Plants inoculated with the three native AMF showed significant increase of K+ and reduced Na+ accumulation as compared to non‐mycorrhizal plants, concomitantly with higher K+/Na+ ratios in their tissues. For the first time, these effects have been correlated with regulation of ZmAKT2, ZmSOS1 and ZmSKOR genes expression in the roots of maize, contributing to K+ and Na+ homeostasis in plants colonized by native AMF.  相似文献   

9.
To explore the mechanisms of 5‐aminolevulinic acid (ALA)‐improved plant salt tolerance, strawberries (Fragaria × ananassa Duch. cv. ‘Benihoppe’) were treated with 10 mg l?1 ALA under 100 mmol l?1 NaCl stress. We found that the amount of Na+ increased in the roots but decreased in the leaves. Laser scanning confocal microscopy (LSCM) observations showed that ALA‐induced roots had more Na+ accumulation than NaCl alone. Measurement of the xylem sap revealed that ALA repressed Na+ concentrations to a large extent. The electron microprobe X‐ray assay also confirmed ALA‐induced Na+ retention in roots. qRT‐PCR showed that ALA upregulated the gene expressions of SOS1 (encoding a plasma membrane Na+/H+ antiporter), NHX1 (encoding a vacuolar Na+/H+ antiporter) and HKT1 (encoding a protein of high‐affinity K+ uptake), which are associated with Na+ exclusion in the roots, Na+ sequestration in vacuoles and Na+ unloading from the xylem vessels to the parenchyma cells, respectively. Furthermore, we found that ALA treatment reduced the H2O2 content in the leaves but increased it in the roots. The exogenous H2O2 promoted plant growth, increased root Na+ retention and stimulated the gene expressions of NHX1, SOS1 and HKT1. Diphenyleneiodonium (DPI), an inhibitor of H2O2 generation, suppressed the effects of ALA or H2O2 on Na+ retention, gene expressions and salt tolerance. Therefore, we propose that ALA induces H2O2 accumulation in roots, which mediates Na+ transporter gene expression and more Na+ retention in roots, thereby improving plant salt tolerance.  相似文献   

10.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

11.
The present study reports an unequivocal and improved protocol for efficient screening of salt tolerance at flowering stage in rice, which can aid phenotyping of population for subsequent identification of QTLs associated with salinity stress, particularly at reproductive stage. To validate the new method, the selection criteria, level and time of imposition of stress; plant growth medium were standardized using three rice genotypes. The setup was established with a piezometer placed in a perforated pot for continuous monitoring of soil EC and pH throughout the period of study. Further, fertilizer enriched soil was partially substituted by gravels for stabilization and maintaining the uniformity of soil EC in pots without hindering its buffering capacity. The protocol including modified medium (Soil:Stone, 4:1) at 8 dS m?1 salinity level was validated using seven different genotypes possessing differential salt sensitivity. Based on the important selection traits such as high stability index for plant yield, harvest index and number of grains/panicle and also high K+ concentration and low Na+– K+ ratio in flag leaf at grain filling stage were validated and employed in the evaluation of a mapping population in the modified screening medium. The method was found significantly efficient for easy maintenance of desired level of soil salinity and identification of genotypes tolerant to salinity at reproductive stage.  相似文献   

12.
Anthropogenic activities and natural causes contribute to an increase in the area and degree of degraded saline wetlands in arid/semi‐arid and coastal regions. The objective of this study was to determine the salt tolerance of the seven aquatic plant species Phragmites australis, Arundo donax, Canna indica, Scirpus validus, Alternanthera philoxeroides, Phyllostachys heteroclada and Potederia cordata during asexual reproduction and continuous growth. The species were exposed to five salinity treatments from 0.3 (control) to 20 dS m?1 during a 30 day experiment. Data were collected on asexual reproduction and growth, chlorophyll content in leaves, Na+ and K+ concentrations, total nitrogen (TN) and total phosphorus (TP) concentrations in above‐ground biomass (AGB) and below‐ground biomass (BGB). The results showed that: 1) increase in salinity (especially at a salinity level of EC ≥15 dS m?1) generally inhibited the capacity for asexual reproduction and reduced the chlorophyll content of leaves; 2) total dry biomass of plants was significantly negatively related to asexual reproduction; 3) species‐specific salt tolerance mechanisms were reflected by the Na+ and K+ concentrations and Na+/K+ ratios in different parts of the plants; and 4) the absorption of TN and TP were inhibited at high salinity (i.e. EC = 20 dS m?1) in AGB and BGB of most tested plant species. However, salinity may enhance plant uptake of TN and TP under certain conditions (e.g. EC at 5, 10 and 15 dS m?1). In general, as compared to the other species tested, giant reed A. donax and alligator weed A. philoxeroides showed relatively high asexual reproduction and growth capacity under high salt stress, and these species should thus be considered as candidates for restoration of degraded saline wetlands and/or for decontaminating saline wastewater.  相似文献   

13.
Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na+ and/or K+. Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na+/K+ homeostasis and measure Na+ and K+ contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na+ extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na+ from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na+ root-to-shoot distribution and an increase of Na+ accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.  相似文献   

14.
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor‐regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em) measurements. Turgor recovery was inhibited by Gd3+, tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl‐induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na+ but not K+ and Cl? in the incubation media. Na+ uptake was strongly decreased by amiloride and changes in net Na+ and H+ fluxes were oppositely directed. This suggests active uptake of Na+ in V. erythrospora mediated by an antiport Na+/H+ system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K+ efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.  相似文献   

15.
In saline soils, high levels of sodium (Na+) and chloride (Cl?) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+)] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt‐tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt‐sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt‐specific changes in elemental composition in the root growth zone. These results show that LA‐ICP‐MS can be used for fine mapping of soluble ions (i.e. Na+ and K+) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.  相似文献   

16.

Aims

Soil salinity varies greatly in the plant rhizosphere. The effect of nonuniform salinity on the growth and physiology response of alfalfa plants was determined to improve understanding of salt stress tolerance mechanisms of alfalfa.

Methods

Plant growth, predawn leaf water potential, water uptake, and tissue ionic content were studied in alfalfa plants grown hydroponically for 9 days using a split-root system, with uniform salinity or horizontally nonuniform salinity treatments (0/S, 75/S, and 150/S corresponding to 0, 75, and 150 mM NaCl on the low salt side, respectively).

Results

Compared with uniform high salinity, 0/S and 75/S treatments significantly increased the alfalfa shoot dry mass and stem extension rate. Compensatory water uptake by low salt roots of 0/S and 75/S treatments was observed. However, decreased leaf Na+ concentration, increased leaf K+/Na+, and compensatory growth of roots on the low salt side were observed only following the 0/S treatment.

Conclusions

Nonuniform salinity dose not enhance plant growth once a threshold NaCl concentration in low salinity growth medium has been reached. Compensation of water uptake from the low-salt root zone and regulation of K+/Na+ homeostasis in low salt root play more important role than regulation of leaf ions in enhancing alfalfa growth under nonuniform salinity.
  相似文献   

17.
18.
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt‐exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non‐toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.  相似文献   

19.
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non‐invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+‐permeable voltage‐sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.  相似文献   

20.
Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. Na+ and Cl contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest salinity level. Furthermore, leaf succulence and high instantaneous water use efficiency (WUEi) under high salinity significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ100) along with a decrease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indicate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective absorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号