首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The importance of foliar absorption of water and atmospheric solutes in conifers was recognised in the 1970s, and the importance of fog as a water source in forest environments has been recently demonstrated. Araucaria angustifolia (Araucariaceae) is an emergent tree species that grows in montane forests of southern Brazil, where rainfall and fog are frequent events, leading to frequent wetting of the leaves. Despite anatomical evidence in favour of leaf water absorption, there is no information on the existence and physiological significance of a such process. In this study, we test the hypothesis that the use of atmospheric water by leaves takes place and is physiologically relevant for the species, by comparing growth, water relations and nutritional status between plants grown under two conditions of soil water (well‐watered and water‐stressed plants) and three types of leaf spraying (none, water and nutrient solution spray). Leaf spraying had a greater effect in improving plant water relations when plants were under water stress. Plant growth was more responsive to water available to the leaves than to the roots, and was equally increased by both types of leaf spraying, with no interaction with soil water status. Spraying leaves with nutrient solution increased shoot ramification and raised the concentrations of N, P, K, Zn, Cu and Fe in the roots. Our results provide strong indications that water and nutrients are indeed absorbed by leaves of A. angustifolia, and that this process might be as important as water uptake by its roots.  相似文献   

2.
  • Foliar uptake of dew is likely an important mechanism of water acquisition for plants from tropical dry environments. However, there is still limited experimental evidence describing the anatomical pathways involved in this process and the effects of this water subsidy on the maintenance of gas exchange and leaf lifespan of species from seasonally dry tropical vegetation such as the Brazilian caatinga.
  • We performed scanning electron, bright‐field and confocal microscopic analyses and used apoplastic tracers to examine the foliar water uptake (FWU) routes in four woody species with different foliar phenology and widely distributed in the caatinga. Leaves of plants subjected to water stress were exposed to dew simulation to evaluate the effects of the FWU on leaf water potentials, gas exchange and leaf lifespan.
  • All species absorbed water through their leaf cuticles and/or peltate trichomes but FWU capacity differed among species. Leaf wetting by dew increased leaf lifespan duration up to 36 days compared to plants in the drought treatment. A positive effect on leaf gas exchange and new leaf production was only observed in the anisohydric and evergreen species.
  • We showed that leaf wetting by dew is relevant for the physiology and leaf lifespan of plants from seasonally dry tropical vegetation, especially for evergreen species.
  相似文献   

3.
4.
Leaf longevity (LL) varies more than 20‐fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the ‘ageing rate:’ the rate at which leaf photosynthetic capacity declines with age. Here, we present a meta‐analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass‐based carboxylation rate of mature leaves. We assess an improved trait‐driven carbon optimality model with in situLL data for 105 species in two Panamanian forests. We show that our model explains over 40% of the cross‐species variation in LL under contrasting light environment. Collectively, our results reveal how variation in LL emerges from carbon optimisation constrained by both leaf structural traits and abiotic environment.  相似文献   

5.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

6.
  • In Mediterranean ecosystems, some natural areas are exposed to severe anthropogenic impact. Especially in summer, the considerable number of tourists visiting such areas, often with vehicles, causes deposition of dust over the vegetation due to formation of powder clouds, also favoured by wind erosion, high temperature, low precipitation and incoherent soil structure. The main aim of this study was to analyse whether the deposition of dust can induce changes in leaf anatomical functional traits and in the efficiency of photosynthetic apparatus in Centranthus ruber, a species widespread in Mediterranean ecosystems.
  • Leaf morpho‐functional traits were quantified in plants growing at sites characterised by high (HD) and low (LD) dust deposition, in periods with high anthropogenic impact. Analyses included quantification of chlorophyll fluorescence emission parameters, photosynthetic pigment concentration as well as stomatal size and frequency, leaf lamina thickness, quantification of intercellular spaces and phenolics in the mesophyll through microscopy.
  • The overall analysis suggested that the different conditions of dust deposition induced different adjustment of morpho‐functional traits in leaves of C. ruber. High dust deposition shielded the leaf lamina, protecting the photosynthetic apparatus from excess light and favoured plant photochemical efficiency. Leaves exposed to low dust deposition showed higher accumulation of phenolic compounds, protecting chloroplast membranes and characterised by high thermal dissipation of excess light.
  • Such adaptive phenomena can affect vegetation dynamics due to possible different species‐specific plant responses, resulting in different plant competitiveness under the limiting conditions of Mediterranean environments.
  相似文献   

7.
  1. Stream hydro-morphology refers to the heterogeneous distribution of hydrologic conditions that occur above a complex benthic surface such as a streambed.
  2. We hypothesised that hydro-morphological conditions will influence the retention, re-distribution, and microbial-driven decomposition of leaf litter inputs in stream ecosystems because each process varies with overlying water velocity.
  3. We tested this hypothesis using: (1) the spatial distribution of water velocity within a stream reach as a surrogate of stream hydro-morphology; (2) leaf tracer (i.e. Ginkgo biloba L.) additions with serial recovery to examine the relationship between benthic retention and overlying velocity; and (3) measurements of leaf litter decomposition (i.e. Alnus glutinosa [L.] Gaertn.) under different water velocity conditions.
  4. Results demonstrate that water velocity exerts a significant influence on the retention and re-distribution of leaf litter inputs within the reach. The observed range of water velocity (from c. 0 to 0.92 cm/s) also strongly influences the range of leaf litter decomposition rates (0.0076–0.0222/day).
  5. Our findings illustrate that water velocity influences leaf litter dynamics in streams by controlling leaf litter transport, retention and re-distribution as well as how leaves decompose within recipient stream reaches. Ultimately, the results show that the efficiency of leaf litter inputs in supporting stream ecosystem function is dependent on the hydro-morphological characteristics of the receiving stream ecosystems.
  相似文献   

8.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

9.
  • Euphrates poplar (Populus euphratica Oliv.) has heteromorphic leaves including strip, lanceolate, ovate, and broad‐ovate leaves from base to top in the mature canopy.
  • To clarify how diameter at breast height (DBH) and tree height affect the functional characteristics of all kinds of heteromorphic leaves, we measured the morphological anatomical structure and physiological indices of five crown heteromorphic leaves of P. euphratica at 2, 4, 6, 8, 10, and 12 m from the same site. We also analysed the relationships between morphological structures and physiological characteristics of heteromorphic leaves and DBH and the height of heteromorphic leaves.
  • The results showed that the number of abnormalities regarding blade width, leaf area, leaf thickness, leaf mass per area, cuticle layer thickness, palisade tissue thickness, and palisade tissue/sponge tissue ratio increased with size order and sampling height gradient. Net photosynthetic rate, transpiration rate, stomatal conductance, instantaneous water use efficiency, stable delta carbon isotope ratio, proline and malondialdehyde (MDA) content increased with DBH and sampling height. By contrast, blade length, leaf shape index, and intercellular CO2 concentration decreased with the increase in path order and sampling height gradient. Although MDA content and leaf sponge thickness were not correlated with DBH or sampling height, other morphological structure and physiological parameters were significantly correlated with these variables. In addition, correlations were found among leaf morphology, anatomical structure, and physiological index parameters indicating that they changed with path order and tree height gradient.
  • The differences in the morphology, anatomic structure and physiological characteristics of the heteromorphic leaves ofP. euphratica are related to ontogenesis stage and coronal position.
  相似文献   

10.
Plant ecology of tropical and subtropical karst ecosystems   总被引:1,自引:0,他引:1  
Substantial areas of tropical forests, including those within nine tropical biodiversity hotspots, contain karst landscapes that have developed on soluble carbonate rocks. Here, we review how the ecology of karst forest trees is influenced by hydrological, edaphic, and topographic factors that exhibit fine spatial heterogeneity. Comparative analysis of drought tolerance traits including wood density contributes to the assessment of whether karst tree species are more drought‐tolerant compared to non‐karst trees. Although karst ecosystems are generally considered to have low phosphorus availability, foliar nitrogen‐to‐phosphorus ratios exhibit wide variation across karst regions without a clear difference from non‐karst ecosystems. According to the analyses of leaf phenology, stem water storage, and isotopic signatures from xylem sap, water use strategies of karst trees can be classified into five types: (a) soil water dependent, (b) epikarst water dependent (mainly use water stored in fine pores and gaps within the epikarst rock during the dry season), (c) groundwater dependent, (d) fog water dependent, and (e) drought‐deciduous (shed leaves during the dry season). Overall, published data suggest that only a subset of karst tree species are exclusively distributed within karst hilltops where water availability is limited. The diverse resource acquisition and utilization strategies of karst plants across edaphic habitats must be considered when developing effective strategies to conserve and restore biodiversity in karst landscapes, which are under increasing anthropogenic pressure.  相似文献   

11.
Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2–11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials.  相似文献   

12.
Abstract
  • 1 The autumn gum moth, Mnesampela privata, is an endemic Australian geometrid that utilizes a number of species within the genus Eucalyptus as hosts. Based on field observations, the moth is thought to be leaf‐type specific for juvenile as opposed to adult eucalypt foliage.
  • 2 Laboratory binary choice assays of the oviposition preference of host novice M. privata confirmed that eggs were more likely to be laid upon juvenile rather than adult foliage of Eucalyptus dunnii and two subspecies of E. globulus. This oviposition preference was not influenced by differences in leaf size or adherence to leaves by ovipositing moths. The high specific leaf weights common to adult leaves were associated with reduced oviposition.
  • 3 Although neonates fed on both juvenile and adult leaves of most of the trees studied, performance was greater on juvenile as opposed to adult foliage. Juvenile leaves typically had lower specific leaf weights and were nutritionally superior to their adult counterparts. Specific leaf weights above 0.236 mg/mm2 (associated with low water, i.e. = 56.5%, and nitrogen, i.e. = 1.23%, contents) were associated with reduced larval performance. Younger adult leaves, those with lower specific leaf weights, allowed slightly greater larval consumption.
  • 4 When ovipositing, this eucalypt‐specific moth discriminates between leaf types of its heterophyllous hosts in favour of types with the lowest specific leaf weight. Less tough leaf types, which are also higher in nitrogen, enable neonates to attain larger body weights.
  相似文献   

13.
  • Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption.
  • We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance.
  • Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials.
  • Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
  相似文献   

14.
  • Leaf stoichiometry can characterize plant ecological strategies and correlate with plant responses to climate change. The role of vascular epiphytes in the ecosystem processes of tropical and subtropical forest ecosystems cannot be ignored. Vascular epiphytes are very vulnerable to climate change, however, the relationship between the response of epiphytes to climate change and leaf stoichiometry is not well understood.
  • We present data for 19 vascular epiphyte species that were collected during four consecutive censuses (in 2005, 2010, 2015, and 2020) over 15 years in a subtropical montane cloud forest. We assessed the relationships between the population dynamics and leaf stoichiometry of these vascular epiphytes.
  • Experiencing an extreme drought, 14 of the 19 epiphyte species showed an obvious decrease in the number of individuals, and all species showed negative growth in the number of populations. Subsequently, the total number of individuals gradually recovered, increasing from 7,195 in 2010 to 10,121 in 2015, then to 13,667 in 2020. The increase in the number of vascular epiphyte individuals from 2010 to 2015 was significantly negatively correlated with leaf nitrogen and phosphorus concentration, and was significantly positively correlated with the leaf carbon-nitrogen ratio.
  • Vascular epiphyte populations with higher leaf nutrient concentrations exhibited weaker resilience to the extreme drought, which demonstrated that a resource-conservative strategy was advantageous for the recovery of epiphyte populations. Our findings suggest that ecological stoichiometry can be a useful framework for forecasting the dynamics of vascular epiphyte populations in response to climate change.
  相似文献   

15.
Adaptations that reduce water retention on leaf surfaces may increase photosynthetic capacity of cloud forests because carbon dioxide diffuses slower in water than air. Leaf water repellency was examined in three distinct ecosystems to test the hypothesis that tropical montane cloud forest species have a higher degree of leaf water repellency than species from tropical dry forests and species from temperate foothills-grassland vegetation. Leaf water repellency was measured by calculating the contact angle of the leaf surface and the line tangent to a water droplet through the point of contact on the adaxial and the abaxial surface. Leaf water repellency was significantly different between the three study areas. The hypothesis that leaf water repellency is higher in cloud forest species than tropical dry forests and temperate foothills-grassland vegetation was not confirmed in this study. Leaf water repellency was lower for cloud forest species (adaxial surface = 50.8°; abaxial surface = 82.9°) than tropical dry forest species (adaxial surface = 74.5°; abaxial surface = 87.3°) and temperate foothills-grassland species (adaxial surface = 77.6°; abaxial surface = 95.8°). The low values of leaf water repellency in cloud forest species may be influenced by presence of epiphylls and loss of epicuticular wax on the leaf surfaces.  相似文献   

16.
The tropical rainforest mesocosm within the Biosphere 2 Laboratory, a model system of some 110 species developed over 12 years under controlled environmental conditions, has been subjected to a series of comparable drought experiments during 2000–2002. In each study, the mesocosm was subjected to a 4–6 week drought, with well‐defined rainfall events before and after the treatment. Ecosystem CO2 uptake rate (Aeco) declined 32% in response to the drought, with changes occurring within days and being reversible within weeks, even though the deeper soil layers did not become significantly drier and leaf‐level water status of most large trees was not greatly affected. The reduced Aeco during the drought reflected both morphological and physiological responses. It is estimated that the drought‐induced 32% reduction of Aeco has three principal components: (1) leaf fall increased two‐fold whereas leaf expansion growth of some canopy dominants declined to 60%, leading to a 10% decrease in foliage coverage of the canopy. This might be the main reason for the persistent reduction of Aeco after rewatering. (2) The maximum photosynthetic electron transport rate at high light intensities in remaining leaves was reduced to 71% for three of the four species measured, even though no chronic photo‐inhibition occurred. (3) Stomata closed, leading to a reduced ecosystem water conductance to water vapour (33% of pre‐drought values), which not only reduced ecosystem carbon uptake rate, but may also have implications for water and energy budgets of tropical ecosystems. Additionally, individual rainforest trees responded differently, expressing different levels of stress and stress avoiding mechanisms. This functional diversity renders the individual response heterogeneous and has fundamental implications to scale leaf level responses to ecosystem dynamics.  相似文献   

17.
18.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

19.
  1. In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought‐avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.
  2. We examined (a) tolerance to water stress, measured by predawn and mid‐day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.
  3. We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.
  4. Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species‐level differences.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号