首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of Crassulacean acid metabolism (CAM) plants in México and worldwide has a long history, but the morphological and photosynthetic aspects of these plants have only been considered recently. Emphasis in this article is on the daily net CO2 uptake ability by three species of agaves and three species of cacti that are currently extensively cultivated in México for beverages, food, fodder, and forage ‐ Agave mapisaga, A. salmiana, A. tequilana, Opuntia ficus‐indica, O. robusta and Stenocereus queretaroensis. Data under controlled conditions are used to help interpret seasonal net CO2 uptake patterns observed in the field. These CAM plants have instantaneous and total daily net CO2 uptake values similar to those for highly productive C3 and C4 crops. The future increase in the cultivated area of CAM plants will have both agronomical and ecological ramifications because of the ability of these plants to endure prolonged drought and to sequester carbon during extended dry periods when few C3 and C4 crops and non‐CAM native plants can fix atmospheric CO2.  相似文献   

2.
Responses of CAM species to increasing atmospheric CO2 concentrations   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water‐use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco‐mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)‐mediated night‐time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3 ? ) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose‐Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer‐term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change.  相似文献   

3.
Crassulacean acid metabolism (CAM) was demonstrated in four small endemic Australian terrestrial succulents from the genus Calandrinia (Montiaceae) viz. C. creethiae, C. pentavalvis, C. quadrivalvis and C. reticulata. CAM was substantiated by measurements of CO2 gas-exchange and nocturnal acidification. In all species, the expression of CAM was overwhelmingly facultative in that nocturnal H+ accumulation was greatest in droughted plants and zero, or close to zero, in plants that were well-watered, including plants that had been droughted and were subsequently rewatered, i.e. the inducible component was proven to be reversible. Gas-exchange measurements complemented the determinations of acidity. In all species, net CO2 uptake was restricted to the light in well-watered plants, and cessation of watering was followed by a progressive reduction of CO2 uptake in the light and a reduction in nocturnal CO2 efflux. In C. creethiae, C. pentavalvis and C. reticulata net CO2 assimilation was eventually observed in the dark, whereas in C. quadrivalvis nocturnal CO2 exchange approached the compensation point but did not transition to net CO2 gain. Following rewatering, all species returned to their original well-watered CO2 exchange pattern of net CO2 uptake restricted solely to the light. In addition to facultative CAM, C. quadrivalvis and C. reticulata exhibited an extremely small constitutive CAM component as demonstrated by the nocturnal accumulation in well-watered plants of small amounts of acidity and by the curved pattern of the nocturnal course of CO2 efflux. It is suggested that low-level CAM and facultative CAM are more common within the Australian succulent flora, and perhaps the world succulent flora, than has been previously assumed.  相似文献   

4.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

5.
Crassulacean acid metabolism (CAM), an advanced photosynthetic pathway conferring water conservation to plants in arid habitats, has enigmatically been reported in some species restricted to extremely wet tropical forests. Of these, epiphytic Bromeliaceae may possess absorbent foliar trichomes that hinder gas‐exchange when wetted, imposing further limitations on carbon dioxide (CO2) uptake. The hypothesis that the metabolic plasticity inherent to CAM confers an ecological advantage over conventional C3 plants, when constant rainfall and mist might inhibit gas‐exchange was investigated. Gas‐exchange, fluorometry and organic acid and mineral nutrient contents were compared for the bromeliads Aechmea dactylina (CAM) and Werauhia capitata (C3) in situ at the Cerro Jefe cloud forest, Panama (annual rainfall > 4 m). Daily carbon gain and photosynthetic nutrient use efficiencies were consistently higher for A. dactylina, due to a greater CO2 uptake period, recycling of CO2 from respiration and a dynamic response of CO2 uptake to wetting of leaf surfaces. During the dry season CAM also had water conserving and photoprotective roles. A paucity of CAM species at Cerro Jefe suggests a recent radiation of this photosynthetic pathway into the wet cloud forest, with CAM extending diversity in form and function for epiphytes.  相似文献   

6.
Abstract Field measurements of the gas exchange of epiphytic bromeliads were made during the dry season in Trinidad in order to compare carbon assimilation with water use in CAM and C3 photosynthesis. The expression of CAM was found to be directly influenced by habitat and microclimate. The timing of nocturnal CO2 uptake was restricted to the end of the dark period in plants found at drier habitats, and stomatal conductance in two CAM species was found to respond directly to humidity or temperature. Total night-time CO2 uptake, when compared with malic-acid formation (measured as the dawn-dusk difference in acidity, ΔH+), could only account for 10–40% of the total ΔH+ accumulated. The remaining malic acid must have been derived from the refixation of respired CO2 (recycling). Within the genus Aechmea (12 samples from four species), recycling was significantly correlated with night temperature at the six sample sites. Recycling was lowest in A. fendleri (54% of ΔH+ derived from respired CO2), a CAM bromeliad with little water-storage parenchyma that is restricted to wetter, cooler regions of Trinidad. Gas-exchange rates of C3 bromeliads were found to be similar to those of the CAM bromeliads, with CO2 uptake from 1 to 3 μmol m?2 s?1 and stomatal conductances generally up to 100 mmol m?2 s?1. The midday depression of photosynthesis occurred in exposed habitats, although photosynthetically active radiation (PAR) limited photosynthesis in shaded habitats. CO2 uptake of the C3 bromeliad Guzmania lingulata was saturated at around 500 μmol m?2 s?1 PAR, suggesting that epiphytic plants found in the shaded forest understorey are shade-tolerant rather than shade-demanding. Transpiration ratios (TR) during CO2 fixation in CAM (Phase I and IV) and C3 bromeliads were compared at different sites in order to assess the efficiency of water utilization. For the epiphytes displaying marked uptake of CO2, TR were found to be lower than many previously published values. In addition, the average TR values were very similar for dark CO2 uptake in CAM (42 ± 41, n= 12), Phase IV of CAM (69 ± 36, n= 3) and for C3 photosynthesis (99 ± 73, n= 4) in these plants. It appears that recycling of respired CO2 by CAM bromeliads and efficient use of water in all phases of CO2 uptake are physiological adaptations of bromeliads to arid microclimates in the humid tropics.  相似文献   

7.
Responses of succulents to plant water stress   总被引:19,自引:16,他引:3       下载免费PDF全文
Experiments were performed to test the hypothesis that succulents “shift” their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C3-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO2 uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C3-photosynthesis to internal cycling of CO2. Acid fluctuation commenced in response to stress but exogenous CO2 uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO2 uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO2 cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids.  相似文献   

8.
Seasonal Shifts of Photosynthesis in Portulacaria afra (L.) Jacq   总被引:6,自引:5,他引:1       下载免费PDF全文
Portulacaria afra (L.) Jacq., a perennial facultative Crassulacean acid metabolism (CAM) species, was studied under natural photoperiods and temperatures in San Diego, California. The plants were irrigated every fourth day throughout the study period. Measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made periodically from July 1981 through May 1982. P. afra maintained C3 photosynthesis during the winter and the spring. Diurnal acid fluctuations were low and maximal 14CO2 uptake occurred during the day. The day/night ratio of carbon uptake varied from 5 to 10 and indicated little nocturnal CO2 uptake. CAM photosynthesis occurred during the summer and a mixture of both C3 and CAM during the fall. Large acid fluctuations of 100 to 200 microequivalents per gram fresh weight were observed and maximal 14CO2 uptake shifted to the late night and early morning hours. Daytime stomatal closure was evident. A reduction in the day/night ratio of carbon uptake to 2 indicated a significant contribution of nocturnal CO2 uptake to the overall carbon gain of the plant. The seasonal shift from C3 to CAM was facilitated by increasing daytime temperature and accompanied by reduced daytime CO2 uptake despite irrigation.  相似文献   

9.
Summary Hemiepiphytic species in the genera Clusia and Ficus were investigated to study their mode of photosynthetic metabolism when growing under natural conditions. Despite growing sympatrically in many areas and having the same growth habit, some Clusia species show Crassulacean acid metabolism (CAM) whereas all species of Ficus investigated are C3. This conclusion is based on diurnal CO2 fixation patterns, diurnal stomatal conductances, diurnal titratable acidity fluctuations, and 13C isotope ratios. Clusia minor, growing in the savannas adjacent to Barinas, Venezuela, shows all aspects of Crassulacean acid metabolism (CAM) on the basis of nocturnal gas exchange, stomatal conductance, total titratable acidity, and carbon isotope composition when measured during the dry season (February 1986). During the wet season (June 1986), the plants shifted to C3-type gas exchange with all CO2 uptake occurring during the daylight hours. The carbon isotope composition of new growth was-28 to-29 typical of C3 plants.  相似文献   

10.
Abstract The paper reports the results of the comprehensive study of crassulacean acid metabolism in two epiphytic tropical ferns, Drymoglossum piloselloides and Pyrrosia longifolia. The plants were investigated under different light, temperature and water status. It was found that both species are obligate CAM plants. The diurnal acidity rhythm is due to the fluctuation in malic acid concentration, which accounts for the change in titratable acidity. Besides malic acid, shikimate and oxalate are found to be present, but not contributing to the CAM acid rhythm. The diurnal rhythm of malic acid content results in a corresponding rhythm in leaf water relations. Both ΦΦ and Φtotal, were lowest at the end of the night, i.e. when the level of malic acid was highest. The effects of temperature on CO2 exchange were inverse to those observed in other CAM plants. In both ferns studied, dark CO2 fixation increased when the night temperature was increased. Increase in day temperature reduced CO2 uptake during phase IV and during the following night. The observed responses of the ferns to temperature changes suggest that the in situ environmental conditions are optimal for their CAM performance. In weak light, the plants showed net CO2 output during the midday deacidification period. Increases in light intensity reduced such CO2 output. Under drought conditions, the CO2 exchange in the ferns was reduced to zero within 5–6 d, indicating that the ferns studied are more susceptible to water deficiency than other CAM plants. This could be due to a higher cuticular conductance for water. The results are discussed, in particular, in relation to CAM performance of epiphytes growing in the wet tropics.  相似文献   

11.
We analyzed the eddy covariance measurements of momentum, mass, and energy taken daily throughout five consecutive seasonal courses (i.e. 840 d after planting) of a pineapple [Ananas comosus (L.) Merr. cv. Red Spanish] field growing in the Orinoco lowlands. This field provides an opportunity for micrometeorological studies because of the flat and windy site; the seasonal weather including ENSO effects and the Crassulacean Acid Metabolism (CAM) physiology of the crop were additional attributes. Soil CO2 flux was quantified and added to the net ecosystem exchange in order to obtain the canopy flux (FC). The canopy CO2 flux partially followed the four phases of CAM sensu Osmond (1978). The daily pattern of gaseous exchange in pineapple showed a continuum spectrum in which a major proportion of CO2 uptake occurring during the daytime was common and in which the CAM expression was related to day and nocturnal CO2 uptake. However, the benefits of CO2 uptake at low water cost were constrained by the limited nocturnal CO2 uptake. Seasonal and ontogenetic changes affected the energy exchange as well as the partitioning of available energy into sensible (QH) and latent (QLE) heat. When the hourly net radiation (QRn) reached its maximum value, latent heat flux (QLE) to available energy throughout the vegetative and reproductive stages was 0.65, 0.05, 0.30, 0.11, and 0.33 for the 1997 wet season, 1997/98 dry season, 1998 wet season, 1998/99 dry season, and 1999 wet season, respectively. Throughout the growth period, we found the pivotal role of surface conductance (g S) in both QLE and FC. Furthermore, the canopy responded to environmental changes. During the wet seasons the g S was strongly influenced by humidity mole fraction deficit and was usually lower than aerodynamic conductance, whereas during the dry seasons, soil water deficit limited evapotranspiration and production rates. For the fully canopy cover, the hourly trend of marginal water cost of pineapple carbon gain in the dry seasons indicated that g S became sufficiently efficient to reduce the amount of water transported per unit of carbon gain. In the wet season, the coupling of CO2 uptake and stomatal conductance was more effective in maintaining a higher proportionality between QLE and g S.  相似文献   

12.
After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11–12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.Partially supported by Biomedical Sciences Support Grant RR07037.  相似文献   

13.
The kinetics of chlorophyll fluorescence were measured in Portulacaria afra (L.) Jacq. when the plants were functioning in either Crassulacean acid metabolism (CAM) or C3/CAM cycling (called cycling) modes, as determined by fluctuation in titratable acidity and gas exchange properties. Cycling plants showed primarily daytime CO2 uptake typical of C3 plants, but with a slight diurnal acid fluctuation, whereas CAM plants showed nocturnal CO2 uptake, daytime stomatal closure, and a large diurnal acid fluctuation. Results from fluorescence measurements indicated no significant differences in photochemical quenching between cycling and CAM plants; however, sizable differences were detected in nonphoto-chemical quenching (qn), with the largest differences being observed during the middle of the day. Cycling plants had lower qn than CAM plants, indicating altered photosynthetic regulation processes. This qn difference was believed to be related to reduced internal CO2 concentration in the CAM plants because of daytime stomatal closure and reduced deacidification rates in the late afternoon when most of the malic acid has been utilized. Experimentally, higher external CO2 given to plants in the CAM mode resulted in a decline in qn in comparison to that measured in plants in the cycling mode. No changes were observed in photochemical quenching when CO2 was added.  相似文献   

14.
Net CO2 uptake over 24-hour periods was examined for the leaves and for the stems of 11 species of cacti representing all three subfamilies. For Pereskia aculeata, Pereskia grandifolia, and Maihuenia poeppigii (subfamily Pereskioideae), all the net shoot CO2 uptake was by the leaves and during the daytime. In contrast, for the leafless species Carnegiea gigantea, Ferocactus acanthodes, Coryphantha vivipara, and Mammillaria dioica (subfamily Cactoideae), all the shoot net CO2 uptake was by the stems and at night. Similarly, for leafless Opuntia ficus-indica (subfamily Opuntioideae), all net CO2 uptake occurred at night. For leafy members of the Opuntioideae (Pereskiopsis porteri, Quiabentia chacoensis, Austrocylindropuntia subulata), at least 88% of the shoot CO2 uptake over 24 hours was by the leaves and some CO2 uptake occurred at night. Leaves responded to the instantaneous level of photosynthetically active radiation (PAR) during the daytime, as occurs for C3 plants, whereas nocturnal CO2 uptake by stems of O. ficus-indica and F. acanthodes responded to the total daily PAR, as occurs for Crassulacean acid metabolism (CAM) plants. Thus, under the well-watered conditions employed, the Pereskioideae behaved as C3 plants, the Cactoideae behaved as CAM plants, and the Opuntioideae exhibited characteristics of both pathways.  相似文献   

15.
In the epiphytic tillandsioids, Guzmania monostachia, Werauhia sanguinolenta, and Guzmania lingulata (Bromeliaceae), juvenile plants exhibit an atmospheric habit, whereas in adult plants the leaf bases overlap and form water-holding tanks. CO2 gas-exchange measurements of the whole, intact plants and δ13C values of mature leaves demonstrated that C3 photosynthesis was the principal pathway of CO2 assimilation in juveniles and adults of all three species. Nonetheless, irrespective of plant size, all three species were able to display features of facultative CAM when exposed to drought stress. The capacity for CAM was the greatest in G. monostachia, allowing drought-stressed juvenile and adult plants to exhibit net CO2 uptake at night. CAM expression was markedly lower in W. sanguinolenta, and minimal in G. lingulata. In both species, low-level CAM merely sufficed to reduce nocturnal respiratory net loss of CO2. δ13C values were generally less negative in juveniles than in adult plants, probably indicating increased diffusional limitation of CO2 uptake in juveniles.  相似文献   

16.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

17.
This study demonstrates unequivocally the presence of crassulacean acid metabolism (CAM) in a species of the Rubiaceae, the fourth largest angiosperm plant family. The tropical Australian endemic epiphytic ant-plant, Myrmecodia beccarii Hook.f., exhibits net CO2 uptake in the dark and a concomitant accumulation of titratable acidity in plants in the field and in cultivation. Plants growing near Cardwell, in a north Queensland coastal seasonally dry forest of Melaleuca viridiflora Sol. ex Gaertn., accumulated ~50 % of their 24 h carbon gain in the dark during the warm wet season. During the transition from the wet season to the dry season, 24 h carbon gain was reduced whilst the proportion of carbon accumulated during the dark increased. By mid dry season many plants exhibited zero net carbon uptake over 24 h, but CO2 uptake in the dark was observed in some plants following localised rainfall. In a shade-house experiment, droughted plants in which CO2 uptake in the light was absent and dark CO2 uptake was reduced, were able to return to relatively high rates of CO2 uptake in the light and dark within 12 h of rewatering.  相似文献   

18.
Abstract Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C3 grass Bromus mollis that co‐occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum. High nutrient and low water conditions favored M. crystallinum over B. mollis, in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9‐week‐old individuals of M. crystallinum, in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well‐watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.  相似文献   

19.
Crassulacean acid metabolism (CAM) was examined under natural environmental conditions in the succulent C4 dicot Portulaca oleracea L. Two groups of plants were monitored; one was watered daily (well watered), while the other received water once every 3 to 4 weeks to produce a ψ of −8 bars (drought stressed). Gas exchange, transpiration rate, and titratable acidity were measured for 24-hour periods during the growing season. CAM activity was greatest in drought-stressed plants during late August which had 13 hour days and day/night temperatures of 35/15°C. Under these conditions net CO2 uptake occurred slowly throughout the night. Diurnal fluctuations of titratable acidity took place in both leaves and stems with amplitudes of 17 and 47 microequivalents per gram fresh weight, respectively. Transpiration data indicated greater opening of stomata during the night than the day. CAM was less pronounced in drought-stressed P. oleracea plants in July and September; neither dark CO2 uptake nor positive carbon balance occurred during the July measurements. In contrast, well-watered plants appeared to rely on C4 photosynthesis throughout the season, although some acid fluctuations occurred in stems of these plants during September.  相似文献   

20.
 Changes in chlorophyll a fluorescence during the day and diurnal-changes of net CO2-exchange and organic acid contents were determined in two species of the genus Clusia during the dry season in Venezuela. The investigations included plants of the C3/CAM intermediate species Clusia minor and the C3 species C. multiflora growing at exposed and shaded sites. Both species showed a C3 pattern of net CO2-exchange at the exposed site. In the shade under extreme drought stress C. minor showed a weak expression of CAM without CO2-uptake during the afternoon (phase IV of CAM). C. multiflora growing in the shade exhibited a C3-pattern of net CO2-exchange and a small but significant nocturnal accumulation of citrate. Shaded plants of C. minor were able to double their light utilisation for electron transport and to reduce non-photochemical quenching during phase III compared to phase II of CAM. Furthermore, increase of electron transport rate through photosystem II in phase III of CAM is correlated to decarboxylation of malate. At the exposed site C. multiflora was less negatively affected by high PPFD than C. minor. This was shown by a lower reduction of potential electron quantum yield (Fv/Fm) and higher light utilisation of electron transport of C. multiflora compared to C. minor. At the exposed site C. minor did not make use of the CAM option to increase light utilisation of electron transport and to reduce non-photochemical quenching as did the plants growing in the shade. Received: 20 March 1996 / Accepted: 24 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号