首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Investigating spatial variation in the relative importance of sexual reproduction and clonal propagation is critical to obtain more accurate estimates of future effective population sizes and genetic diversity, as well as to identify ecological correlates of clonality.
  • We combined a stratified sampling scheme with microsatellite genetic analyses to estimate variation in the proportion of sexual versus clonal recruits among saplings in five populations of the tree Pyrus bourgaeana. Using a likelihood framework, we identified clones among the genotypes analysed and examined variation among populations regarding the proportion of saplings coming from clonal propagation. We also examined the relationship between the relative abundance of clonal shoots across the studied populations and their herbivory levels.
  • Our results revealed that one third of the saplings examined (N = 225 saplings) had a probability above 0.9 of being clones of nearby (<10 m) trees, with the ratio between clonal propagation and sexual recruitment varying up to eight‐fold among populations. A small portion of these putative clonal shoots reached sexual maturity. Relative abundance of clonal shoots did not significantly relate to the herbivory by ungulates.
  • Our results call into question optimistic expectations of previous studies reporting sufficient levels of recruitment under parental trees without animal seed dispersal services. Nevertheless, given that some of these clonal shoots reach sexual maturity, clonal propagation can ultimately facilitate the long‐term persistence of populations during adverse periods (e.g. environmental stress, impoverished pollinator communities, seed dispersal limitation).
  相似文献   

2.
Carex moorcroftii Falc. ex Boott is a rhizomatous clonal sedge dominating vast alpine steppe and meadow vegetations in the hinterland of the Qinghai-Tibet plateau. To reveal the genetic and clonal structure of this species, nine populations were investigated using ten inter-simple sequence repeat (ISSR) markers. As compared to other rhizomatous Carex species, C. moorcroftii had lower genetic diversity (Hs = 0.10) at population level and higher genetic differentiation (Gst = 0.66) and lower gene flow (Nm = 0.26) between populations. Clonal diversity in C. moorcroftii in terms of Simpson index (D = 0.65) was comparable to that in other clonal species while lower than that in Carex species from the arctic and subarctic areas. The ratio of clonal diversity to genetic variation in C. moorcroftii was closely correlated with latitude, enabling a speculation about the northern migration of this species on this plateau.  相似文献   

3.
Gene dispersal and clonality are important aspects of plant evolution affecting the spatial genetic structure (SGS) and the long‐term survival of species. In the tropics these parameters have mostly been investigated in trees and some herbs, but rarely in climbers which frequently: (1) show clonal growth leading to a patchy distribution pattern similar to that of understory herbs; and (2) flower in the canopy where they may have access to long‐distance dispersal like canopy trees. We thus hypothesize for climbers an intermediate genetic structure between herbs and trees. The study aims at assessing breeding system and spatial extent of clonality and gene dispersal in Haumania danckelmaniana (Marantaceae), a common climber in the tropical rain forests from western Central Africa. In eastern Cameroon, 330 ramets were sampled at three spatial scales and genotyped at seven microsatellite loci. Clonality was moderate (clonal extend: 15–25 m, clonal diversity 0.4–0.65) indicating the importance of recruitment from seeds at this locality. The low inbreeding (FIS) suggested predominant outcrossing. The rate of decay of the relatedness between individuals with distance indicated limited gene dispersal distance (σ= 9–50 m, neighborhood sizes Nb = 23–67) in accordance with narrowly gravity dispersed seeds and restricted pollen transfer distance in densely flowering populations. The marked SGS (Sp = 0.011–0.026) was similar to that reported in tropical trees, but might increase with augmented clonality as in many herbs, especially under more severe disturbance regimes.  相似文献   

4.
Aim This study investigates the amount and distribution of genetic variation within and among populations of the highly invasive tree, Miconia calvescens (Melastomataceae; hereafter miconia), in tropical island habitats that are differently impacted (distribution and spread) by this weed. Location Invasive populations were included from northern and southern Pacific islands including the Hawaiian Islands (Hawaii, Kauai and Maui), Marquesas Islands (Nuku Hiva), Society Islands (Tahiti, Tahaa, Moorea, Raiatea) and New Caledonia. Methods We used 9 codominant microsatellite and 77 highly variable dominant intersimple sequence repeat markers (ISSRs) to characterize and compare genetic diversity among and within invasive miconia populations. For the codominant microsatellite data we calculated standard population genetic estimates (heterozygosity, number of alleles, inbreeding coefficients, etc.) and described population genetic structure using AMOVA, Mantel tests (to test for isolation by distance), unweighted pair‐group method with arithmetic averages (UPGMA) cluster analysis and principal components analysis (PCA). We also tested for the presence of a population bottleneck and used a Bayesian analysis of population structure in combination with individual assignment tests. For the dominant ISSR data we used AMOVA, PCA, upgma and a Bayesian approach to investigate population genetic structure. Results Both markers types showed little to no genetic differentiation among miconia populations from northern and southern Pacific hemispheres (AMOVA: microsatellite, 3%; ISSR, 0%). Bayesian and frequency‐based analysis also failed to support geographical genetic structure, confirming considerable low genetic differentiation throughout the Pacific. Molecular data furthermore showed that highly successful miconia populations throughout the Pacific are currently undergoing severe bottlenecks and high levels of inbreeding (f = 0.91, ISSR; FIS = 0.27, microsatellite). Main conclusions The lack of population genetic structure is indicative of similar geographical sources for both hemispheres and small founding populations. Differences in invasive spread and distribution among Pacific islands are most likely the result of differences in introduction dates to different islands and their accompanying lag phases. Miconia has been introduced to relatively few tropical islands in the Pacific, and the accidental introduction of a few or even a single seed into favourable habitats could lead to high invasive success.  相似文献   

5.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments.  相似文献   

6.
  • 1 Taxonomic issues in many Daphnia species complexes are often confused by a high degree of phenotypic plasticity and by interspecific hybridisation. Here, we employ molecular genetic tools to confirm the species composition and incidence of hybridisation in extant and resting egg populations of Daphnia from Windermere and Esthwaite Water in the English Lake District.
  • 2 A combination of species‐diagnostic allozymes and mtDNA, confirms that contemporary populations are dominated by a single species, D. galeata.
  • 3 We present the first account of genetic characterisation of dated ‘resting’ eggs using microsatellites and mtDNA, employing PCR‐based DNA recovery, thus providing a temporal dimension to taxonomic patterns. Thirty years ago, two species were present in Esthwaite, D. galeata and D. hyalina, but Windermere populations were dominated by D. galeata only.
  • 4 The use of PCR‐based mtDNA RFLP analysis as a species‐diagnostic tool, and microsatellites to monitor clonal diversity, provide a valuable approach for long‐term studies, especially in populations free from the complicating effect of frequent hybridisation. The detailed limnological records available for many large lakes, and associated changes in land‐use, pollutants and climate, combined with long‐term ephippial molecular genetic data, provide opportunities for exploring natural and anthropogenic impacts on genetic and community structure.
  相似文献   

7.
This paper describes our investigation of genetic variation and clonal structure of the Mediterranean moss Pleurochaete squarrosa (Brid.) Lindb. (Pottiaceae), using inter-simple sequence repeat (ISSR) molecular markers and trnLUAA (intron of plastid gene for Leu tRNA) sequence, choosing different sampling strategies and scales on 16 European populations. Moreover, the intercontinental distribution of two trnL haplotypes, previously found over a large area and including 24 populations in three continents, was also investigated. Despite the prevalent asexual reproduction, P. squarrosa shows a high level of genetic diversity. Some site features seem to affect the clonal structure at the local scale, influencing the relocation of detached fragments and the level of intermingling, but they do not substantially affect genetic diversity. The peculiar vegetative reproduction coupled with somatic mutation could partly account for the genetic variation detected. Genetic distances highlight geographic isolation and limited gene flow among populations. We found only two trnL haplotypes in Europe due to length polymorphism, but, over an intercontinental scale, only non-delete trnL was found in Africa and the USA. ISSR analysis within each population detected a higher genetic distance between the samples with different trnL haplotypes, suggesting the presence of two different genetic lineages within this species, geographically overlapping in the Mediterranean Basin.  相似文献   

8.
9.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

10.
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range‐wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old‐growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation‐based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.  相似文献   

11.
  • Hybridization is a widespread phenomenon present in numerous lineages across the tree of life. Its evolutionary consequences range from effects on the origin and maintenance, to the loss of biodiversity.
  • We studied genetic diversity and intra‐ and interspecific gene flow between two sympatric populations of closely‐related species, Pitcairnia flammea and P. corcovadensis (Bromeliaceae), which are adapted to naturally fragmented Neotropical inselbergs, based on nuclear and plastidial DNA.
  • Our main results indicate a strong reproductive isolation barrier, although low levels of interspecific gene flow were observed in both sympatric populations. The low rates of intraspecific gene flow observed for both P. corcovadensis and P. flammea populations corroborate the increasing body of evidence that inselberg bromeliad species are maintained as discrete evolutionary units despite the presence of low genetic connectivity. Nuclear patterns of genetic diversity and gene flow revealed that hybridization and introgression might not cause species extinction via genetic assimilation of the rare P. corcovadensis.
  • In the face of reduced intraspecific gene exchange, hybridization and introgression may be important aspects of the Pitcairnia diversification process, with a positive evolutionary impact at the bromeliad community level, and thus contribute to increasing and maintaining genetic diversity in local isolated inselberg populations.
  相似文献   

12.
Parrotia subaequalis (Hamamelidaceae) is a Tertiary relic species endemic in eastern China. We used inter‐simple sequence repeat (ISSR) markers to access genetic diversity and population genetic structure in natural five populations of P. subaequalis. The levels of genetic diversity were higher at species level (= 0.2031) but lower at population level (= 0.1096). The higher genetic diversity at species levels might be attributed to the accumulation of distinctive genotypes which adapted to the different habitats after Quaternary glaciations. Meanwhile, founder effects on the early stage, and subsequent bottleneck of population regeneration due to its biological characteristics, environmental features, and human activities, seemed to explain the low population levels of genetic diversity. The hierarchical AMOVA revealed high levels (42.60%) of among‐population genetic differentiation, which was in congruence with the high levels of Nei's genetic differentiation index (GST = 0.4629) and limited gene flow (Nm = 0.5801) among the studied populations. Mantel test showed a significant isolation‐by‐distance, indicating that geographic isolation has a significant effect on genetic structure in this species. Unweighted pair‐group method with arithmetic average clustering, PCoA, and Bayesian analyses uniformly recovered groups that matched the geographical distribution of this species. In particular, our results suggest that Yangtze River has served as a natural barrier to gene flow between populations occurred on both riversides. Concerning the management of P. subaequalis, the high genetic differentiation among populations indicates that preserving all five natural populations in situ and collecting enough individuals from these populations for ex situ conservation are necessary.  相似文献   

13.
  • We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression.
  • We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment.
  • Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%).
  • Despite large heterogeneities caused by genus‐specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species‐rich tropical forests.
  相似文献   

14.
  • Many critically endangered plant species exist in small, genetically depauperate or inbred populations, making assisted gene flow interventions necessary for long‐term population viability. However, before such interventions are implemented, conservation practitioners must consider the genetic and demographic status of extant populations, which are strongly affected by species’ life‐history traits. In northwestern Europe, Juniperus communis, a dioecious, wind‐pollinated and bird‐dispersed gymnosperm, has been declining for the past century and largely exists in small, isolated and senescent populations.
  • To provide useful recommendations for a recovery plan involving translocation of plants, we investigated genetic diversity and structure of populations in Belgium using four microsatellite and five plastid single‐nucleotide polymorphism (SNP) markers.
  • We detected no clonality in the populations, suggesting predominantly sexual reproduction. Populations exhibited high genetic diversity (He = 0.367–0.563) and low to moderate genetic differentiation (FST ≤ 0.133), with no clear geographic structure. Highly positive inbreeding coefficients (FIS = 0.221–0.507) were explained by null alleles, population substructuring and biparental inbreeding. No isolation by distance was observed among distant populations, but isolation at close geographic proximity was found. Patterns were consistent with high historical gene flow through pollen and seed dispersal at both short and long distances. We also tested four pre‐germination treatments among populations to improve germination rates; however, germination rates remained low and only cold‐stratification treatments induced germination in some populations.
  • To bolster population regeneration, introductions of cuttings from several source populations are recommended, in combination with in situ management practices that improve seedling survival and with ex situ propagation.
  相似文献   

15.
As a result of intensive exploitation, disturbed forests now dominate large areas of lowland tropical rainforest in South‐East Asia. The genus Macaranga comprises some of the most important pioneer tree species of the region, among them M. beccariana and M. hypoleuca, two closely related obligate ant‐plants pollinated by thrips. We used nuclear and plastid DNA markers to address questions of genetic diversity and population structure. Twelve plastid haplotypes were detected among 281 samples, three of which were shared between the two study species. Hybrids between the two species appear to be rare. Overall, genetic diversity in both species was moderate to high, with low levels of population differentiation, consistent with other tropical pioneer trees. Genetic structure was generally more pronounced in plastid than in nuclear data, indicating that gene flow via pollen may be more efficient than via seeds. Thrips apparently also serve as efficient pollinators over long distances, perhaps through a combination of passive dispersal by wind and active search for inflorescences in the target area. Our results indicate that M. beccariana and M. hypoleuca populations from recently disturbed habitats do not yet suffer from reduced genetic diversity or increased inbreeding. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 606–621.  相似文献   

16.
Decalobanthus boisianus is a native plant of Hainan Island, China, which has caused considerable damage to tropical forest ecosystems in recent decades. Understanding the genetic diversity and structure of this species can facilitate uncovering the molecular mechanism of its invasive ability. Here, we collected 77 individuals of D. boisianus spanning 8 distribution areas with a gradient of human disturbance intensity (i.e., low, moderate, and high disturbance intensity groups) to assess patterns of genetic diversity and structure using inter simple sequence repeat (ISSR) markers. We found that a total of 220 loci were scored with 13 primers using ISSR methods, and that 198 loci were polymorphic. The genetic diversity of D. boisianus among these eight forests decreased with increasing human disturbance intensity. Over 70% of the total genetic variation was present within populations, while less than 30% of variation was found among populations. There was a high gene flow (1.27) among them due to a lack of effective geographic barriers. The mean Nei's genetic distance of D. boisianus populations was found to be relatively small (i.e., 0.07), and the average genetic similarity of the eight populations was high (i.e., 0.93). Our findings indicate that the genetic diversity of D. boisianus correlated to human disturbance density, and that D. boisianus populations in Hainan Island have frequent gene exchange. We suggest that reduce deforestation to decrease human disturbance may be a good way to prevent the invasion of D. boisianus.  相似文献   

17.
Apomixis, or asexual reproduction through seeds, has been reported for species of the tribe Miconieae, Melastomataceae, but details of the process have yet to be described. We analyzed and compared sporogenesis and gametogenesis in the apomictic Miconia albicans and the sexual M. chamissois. The results point to some differences between species, which were related to the apomictic process. In M. albicans microsporogenesis, problems during meiosis and degeneration of its products led to total pollen sterility, while M. chamissois presented normal bicellular pollen grains in the mature anther. The absence or abnormality of meiosis in M. albicans megasporogenesis led to the formation of an unreduced embryo sac and also to egg cell parthenogenesis, which gave rise to the apomictic embryo. Embryo and endosperm development were autonomous, resulting in seeds and fruits independent of pollination and fertilization. Thus, in this species, apomixis can be classified as diplosporic and obligate. In contrast, meiosis was as expected in the sexual M. chamissois, and led to the development of a reduced embryo sac. Despite the divergent pathways, many embryological characteristics were similar between the studied species and other Melastomataceae and they seem to be conservative character states for the family.  相似文献   

18.
Clonal propagation becomes more abundant with increasing altitudes as environmental conditions worsen. To date, little attention has been paid to the way in which clonal propagation affects genetic diversity and the fine‐scale spatial genetic structure (FSGS) of clonal alpine trees. An AFLP study was undertaken to quantify the clonal and genetic diversity and FSGS of the vulnerable treeline species Polylepis reticulata in Ecuador. We successfully genotyped 32 and 75 ramets within 4 m × 100 m (coarse scale) and 4 m × 4 m (fine scale) transects of one population, respectively. Higher genotypic diversity was detected at the coarse scale than at the fine scale, while lower genetic diversity was detected for P. reticulata than other Polylepis spp. at both scales. Significantly stronger FSGS was detected at the ramet level than the genet level for P. reticulata within a spatial distance of 3 m. The studied P. reticulata population showed pronounced FSGS (Sp = 0.012 at the genet level, a statistic reflecting declining pairwise kinship with distance) revealed restricted gene dispersal, which implies restricted seed dispersal for this population, assuming pollen flow is as extensive as that described for other wind‐pollinated tree species. Our results revealed that clonal diversity is a function of both sample size and the spatial scale of the sampling area. The findings highlights that clonal propagation has affected FSGS within a spatial distance of 3 m for this species.  相似文献   

19.
  • The impacts of the historical geologic and climatic events on the diversity and genetic structure of Neotropical taxa have recently become a subject of study. However, annual plants associated with tropical dry forests remain under‐studied. The exploration of additional taxa in contrasting environments will improve the current understanding of responses of the Neotropical biota to these events. Here, we explore the species distribution and geographic structure of the annual herb Tithonia rotundifolia.
  • We sampled 175 individuals from 19 populations of T. rotundifolia. Species distribution modelling and six microsatellite chloroplast loci were used to infer its population history. We identified areas of historical climate suitability and then tested if there is genetic structuring among these areas.
  • Haplotypes showed strong phylogeographic structure. Historical climatic suitability areas were found along the Pacific coast; however, a gap was found at the Isthmus of Tehuantepec (IT). Although Bayesian analysis showed population structuring, amova revealed that the IT is not its main driver. Instead, a subdivision into a higher number of regions had higher FCT values. Also, populations to the east of the IT showed evidence of recent population expansion and migration in a south–north direction.
  • Pleistocene climate fluctuations partially explain the geographic structure of T. rotundifolia. However, life‐history characteristics such as limited seed dispersal and the patchy distribution of suitable habitats explain the high haplotype diversity and population sub‐structuring and diversity. Lastly, the absence of geographic structure of some haplotypes may indicate long‐distance dispersal, or hybridisation with the closely related T. tubaeformis.
  相似文献   

20.
Reproduction in the genus Penicillium is thought to be completely asexual. Sexual reproduction, as occurs in the related genus Eupenicillium, is thought to provide evolutionary benefits because it allows for new combinations of alleles and therefore increases the amount of variation within the species. This hypothesis was tested using inter-simple sequence repeats (ISSRs) to assess the amount of intraspecific and intra-population variation within Penicillium miczynskii and the closely related Eupenicillium shearii. The data for both genera were also used to test for clonal reproduction against the null hypothesis of panmixis, using measures of genotypic diversity, linkage disequilibrium and phylogenetic tree length. The ISSR fingerprints indicated that the 70 Eupenicillium strains actually included two distinct species, Eupenicillium shearii and Eupenicillium tropicum sp. nov., each represented by populations in both Costa Rica and India. While none of the species or populations were found to be randomly recombining, the relative strength of the clonal component differed among the species. Penicillium miczynskii had the smallest clonal component, with the highest genotypic diversity, lowest Index of Association, 40 % of alleles non-randomly associated, and phylogenetic tree length closer to that of recombined data sets than to the minimum possible. Eupenicillium tropicum showed nearly complete clonal reproduction with the lowest genotypic diversity and 100 % of alleles non-randomly associated in both populations. On the other hand, it also had the greatest amount of intraspecific variation, with as little as 38 % similarity among strains. The results indicate that Penicilliumspecies may, on rare occasion, genetically recombine; the regular occurrence of meiosis in the life cycle of Eupenicilliumspecies does not facilitate recombination; and the greatest amount of genetic variation was not associated with recombination, but with clonal propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号