首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aquatic duckweed Spirodela polyrhiza propagates itself vegetatively by forming turions – bud‐like perennation organs – in the autumn, which spend the winter on the bottom of ponds and then germinate in the following spring and proliferate on the water surface. Newly formed turions usually require a period of cold after‐ripening and light to germinate effectively, but an ample supply of exogenous sugar can lead to germination even in the dark and independent of after‐ripening. The results of the present study indicate that the availability of readily metabolised carbohydrates is a determining factor for turion germination. Freshly harvested turions do not contain soluble, low‐molecular weight carbohydrates at a level sufficient to allow germination to take place, but after‐ripened turions do. Augmentation of the soluble carbohydrate content during after‐ripening derives from gradual breakdown of reserve starch of the turions. The long time required for any germination to be observed in turions incubated in darkness and the limited frequency of germination in the dark (about 50% of turion population), even with an ample external sugar, supply emphasise that both after‐ripening and light are essential for ensuring rapid germination and subsequent frond proliferation at an ecologically appropriate time. The carbohydrate supply required for rapid proliferation of the fronds produced at germination is provided by the rapid light‐induced breakdown of turion reserve starch.  相似文献   

2.
Spirodela polyrhiza is a fast‐growing aquatic monocot with highly reduced morphology, genome size and number of protein‐coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158‐Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome‐wide physical maps combined with high‐coverage short‐read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela‐specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non‐essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large‐scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.  相似文献   

3.
Quantifying the anatomical data acquired from three‐dimensional (3D) images has become increasingly important in recent years. Visualization and image segmentation are essential for acquiring accurate and detailed anatomical data from images; however, plant tissues such as leaves are difficult to image by confocal or multi‐photon laser scanning microscopy because their airspaces generate optical aberrations. To overcome this problem, we established a staining method based on Nile Red in silicone‐oil solution. Our staining method enables color differentiation between lipid bilayer membranes and airspaces, while minimizing any damage to leaf development. By repeated applications of our staining method we performed time‐lapse imaging of a leaf over 5 days. To counteract the drastic decline in signal‐to‐noise ratio at greater tissue depths, we also developed a local thresholding method (direction‐selective local thresholding, DSLT) and an automated iterative segmentation algorithm. The segmentation algorithm uses the DSLT to extract the anatomical structures. Using the proposed methods, we accurately segmented 3D images of intact leaves to single‐cell resolution, and measured the airspace volumes in intact leaves.  相似文献   

4.
5.
Sucrose non‐fermenting‐1‐related protein kinase‐1 (SnRK1) is an essential energy‐sensing regulator and plays a key role in the global control of carbohydrate metabolism. The SnRK1 gene has been found to increase starch accumulation in several plant species. However, its roles in improving starch quality have not been reported to date. In this study, we found that the IbSnRK1 gene was highly expressed in the storage roots of sweet potato and strongly induced by exogenous sucrose. Its expression followed the circandian rhythm. Its overexpression not only increased starch content, but also decreased proportion of amylose, enlarged granule size and improved degree of crystallinity and gelatinization in transgenic sweet potato, which revealed, for the first time, the important roles of SnRK1 in improving starch quality of plants. The genes involved in starch biosynthesis pathway were systematically up‐regulated, and the content of ADP‐glucose as an important precursor for starch biosynthesis and the activities of key enzymes were significantly increased in transgenic sweet potato. These findings indicate that IbSnRK1 improves starch content and quality through systematical up‐regulation of the genes and the increase in key enzyme activities involved in starch biosynthesis pathway in transgenic sweet potato. This gene has the potential to improve starch content and quality in sweet potato and other plants.  相似文献   

6.
Increased phosphate concentration, higher temperature and addition of glucose all increased the number of fronds and turions of the duckweed Spirodela polyrhiza formed under in vitro conditions. Increasing the number of turions by increasing the plant biomass does not mean that the developmental process (switch of the programme of the primordia from vegetative fronds toward resting turions) has been specifically influenced. The specific turion yield (STY; number of turions formed by one frond) and the time of onset of turion formation have been used as more specific measures of turion induction. At more than 30 µm initial phosphate the STY was increased by lower temperature (15 °C) and became independent of the phosphate concentration. Between 10 and 30 µm and at higher temperatures (25 °C) the STY was increased by lower phosphate levels. The stimulatory effect of lower temperature was more pronounced than that of lower phosphate concentrations. Decreased phosphate concentration highly accelerated the formation of the first turions. The influence of low temperature was small at lower phosphate concentration but became dominant at higher concentrations (especially in autotrophic cultures). Low phosphate levels (e.g. 10 µm ) and low temperatures (e.g. 15 °C) both represent specific turion‐inducing factors having significant interactive effects. In S. polyrhiza, these signals may replace the interactive effects of photoperiods and low temperature known from other hydrophytes in turion induction under natural conditions.  相似文献   

7.
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions.  相似文献   

8.
Restoration of submerged aquatic vegetation from seed has been hampered by a lack of information on the appropriate conditions for collecting, processing, and storing seeds prior to dispersal. Seeds must be processed and stored under conditions that maintain seed viability, meet dormancy requirements, and prevent premature germination. This study examined the effects of collection date, processing technique, aeration, storage and induction temperature and salinity, and storage period on seed germination of two mesohaline aquatic species, Potamogeton perfoliatus and Ruppia maritima. Collection date and processing technique were significant factors affecting seed yield from donor populations. Seeds of both species remained viable and germinated best when stored at 4°C, and then exposed to freshwater induction conditions. However, their responses to other factors differed. Aeration during storage was necessary in order to maintain viability of P. perfoliatus seeds, whereas it was unnecessary for R. maritima seeds. Storage in freshwater at 4°C prevented germination of P. perfoliatus seeds, while high salinity during cold storage was necessary to minimize premature germination of R. maritima. Mean germination time of P. perfoliatus was dependent on storage salinity; in contrast, mean germination time of R. maritima seeds was dependent on induction salinity. These differences indicate that the methods required to produce large quantities of underwater plant seed amenable to large‐scale restoration efforts must be tailored to the specific requirements of individual species and must consider the range of processes from initial harvest through seed testing prior to field establishment.  相似文献   

9.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

10.
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non‐framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m?2 yr?1. However, non‐framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non‐framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean‐wide dominance of non‐framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non‐framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.  相似文献   

11.
The Canada lynx (Lynx canadensis) and the bobcat (Lynx rufus) are closely related species with overlap at their range peripheries, but the factors that limit each species and the interactions between them are not well understood. Habitat selection is a hierarchical process, in which selection at higher orders (geographic range, home range) may constrain selection at lower orders (within the home range). Habitat selection at a very fine scale within the home range has been less studied for both lynx and bobcat compared to selection at broader spatiotemporal scales. To compare this fourth‐order habitat selection by the two species in an area of sympatry, we tracked lynx and bobcat during the winters of 2017 and 2018 on the north shore of Lake Huron, Ontario. We found that both lynx and bobcat selected shallower snow, higher snowshoe hare abundance, and higher amounts of coniferous forest at the fourth order. However, the two species were spatially segregated at the second order, and lynx were found in areas with deeper snow, more snowshoe hare, and more coniferous forest. Taken together, our findings demonstrate that the lynx and bobcat select different resources at the second order, assorting along an environmental gradient in the study area, and that competition is unlikely to be occurring between the two species at finer scales.  相似文献   

12.
Spirodela oligorrhiza, a promising duckweed identified in previous studies, was examined under different cropping conditions for nutrient recovery from swine wastewater and biomass production. To prevent algae bloom during the start-up of a duckweed system, inoculating 60% of the water surface with duckweed fronds was required. In the growing season, the duckweed system was capable of removing 83.7% and 89.4% of total nitrogen (TN) and total phosphorus (TP) respectively from 6% swine lagoon water in eight weeks at a harvest frequency of twice a week. The total biomass harvested was 5.30 times that of the starting amount. In winter, nutrients could still be substantially removed in spite of the limited duckweed growth, which was probably attributed to the improved protein accumulation of duckweed plants and the nutrient uptake by the attached biofilm (algae and bacteria) on duckweed and walls of the system.  相似文献   

13.
14.
15.
Citrus tristeza virus (CTV), the causal agent of tristeza disease, causes the devastating diseases worldwide. In Taiwan, complex cultivars and long‐term infection by CTV result in more than 90% of infected citrus trees, but local strain identification and classification are still incomplete. Here, six CTV strains were categorized by grafting onto eight citrus cultivars and the pathological characteristics of the stem‐pitting mild strains were identified. After 6 months of inoculation, the pummelo stem‐pitting severe strain (CTV‐Pum/SP/T1) only caused severe symptoms in Wentan pummelo (WP) and the mild strain (CTV‐Pum/M/T5) was symptomless in every cultivar; the sweet orange (SO) stem‐pitting severe strain (CTV‐SwO/SP/T7) affected SO, WP and Ponkan mandarin (PM), and the mild strain (CTV‐SwO/M/T51) caused no symptoms in SO except for WP; the mandarin stem‐pitting severe strain (CTV‐Man/SP/T46) caused severe impacts in PM, WP and Eureka lemon, whereas the mild strain (CTV‐Man/M/T2) only caused severe stem‐pitting in WP. The full‐length sequencing of both pummelo stem‐pitting strains and phylogenetic analysis revealed that CTV‐Pum/SP/T1 and CTV‐Pum/M/T5 were related to the HA18‐9 and HA16‐5 strains from Hawaii, respectively. Moreover, recombination analysis revealed that TCT repeat sequences existed at open reading frame 1a in both the CTV‐Pum/SP/T1 and the T36 strains from the United States, indicating that the possible evolution relationship between two regions. Furthermore, improved universal and specific primer pairs were designed for more specific, sensitive detection to meet the needs for quarantine and early prevention. The understanding of strain pathogenicity and genomic analysis provided further characterization of each strain and enabled practical challenge inoculation against CTV disease.  相似文献   

16.
17.
Chlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large‐scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants. Many of these genes are likely to be central to the process of photosynthesis, and they are over‐represented by sixfold among the screened insertional mutants, with insertion events isolated in or adjacent to 68 of 597 GreenCut2 genes. This enrichment thus provides experimental support for functional assignments based on previous bioinformatic analysis. To illustrate one of the uses of the population, a candidate gene approach based on genome position of the flanking sequence of the insertional mutant CAL027_01_20 was used to identify the molecular basis of the classical C. reinhardtii mutation ac17. These mutations were shown to affect the gene PDH2, which encodes a subunit of the plastid pyruvate dehydrogenase complex. The mutants and associated flanking sequence data described here are publicly available to the research community, and they represent one of the largest phenotyped collections of algal insertional mutants to date.  相似文献   

18.
One of the most important defenses for the eggs of ovipositing female organisms is to avoid being laid in the same habitat as their predators. However, for most organisms, completely avoiding an offspring's predators is not possible. One mechanism that has been largely overlooked is for females to partition an oviposition site into microhabitats that differ in quality for offspring survival. We conducted a series of experiments to examine whether female newts avoid microhabitats utilized by their offspring's primary predator, caddisfly larvae. Female newts avoided laying eggs near predatory caddisflies and shifted egg laying upward in the water column when provided with a vertical dimension. Caddisflies were attracted to chemical stimuli from female newts and their eggs, yet primarily used benthic areas in experimental chambers. Finally, results from a field experiment indicate that the behavioral strategy employed by female newts increases offspring survival. This subset of non‐genetic maternal effects, micro‐oviposition avoidance, is likely an important yet underexplored mechanism by which females increase offspring survival.  相似文献   

19.
20.
Understanding life history traits is an important first step in formulating effective conservation and management strategies. The use of artificial propagation and supplementation as such a strategy can have numerous effects on the supplemented natural populations and minimizing life history divergence is crucial in minimizing these effects. Here, we use single nucleotide polymorphism (SNP) genotypes for large‐scale parentage analysis and pedigree reconstruction in a hatchery population of steelhead, the anadromous form of rainbow trout. Nearly complete sampling of the broodstock for several consecutive years in two hatchery programmes allowed inference about multiple aspects of life history. Reconstruction of cohort age distribution revealed a strong component of fish that spawn at 2 years of age, in contrast to programme goals and distinct from naturally spawning steelhead in the region, which raises a significant conservation concern. The first estimates of variance in family size for steelhead in this region can be used to calculate effective population size and probabilities of inbreeding, and estimation of iteroparity rate indicates that it is reduced by hatchery production. Finally, correlations between family members in the day of spawning revealed for the first time a strongly heritable component to this important life history trait in steelhead and demonstrated the potential for selection to alter life history traits rapidly in response to changes in environmental conditions. Taken together, these results demonstrate the extraordinary promise of SNP‐based pedigree reconstruction for providing biological inference in high‐fecundity organisms that is not easily achievable with traditional physical tags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号