共查询到20条相似文献,搜索用时 0 毫秒
1.
Matthew Galliart Nora Bello Mary Knapp Jesse Poland Paul St Amand Sara Baer Brian Maricle Adam B. Smith Loretta Johnson 《Global Change Biology》2019,25(3):850-868
Many prior studies have uncovered evidence for local adaptation using reciprocal transplant experiments. However, these studies are rarely conducted for a long enough time to observe succession and competitive dynamics in a community context, limiting inferences for long‐lived species. Furthermore, the genetic basis of local adaptation and genetic associations with climate has rarely been identified. Here, we report on a long‐term (6‐year) experiment conducted under natural conditions focused on Andropogon gerardii, the dominant grass of the North American Great Plains tallgrass ecosystem. We focus on this foundation grass that comprises 80% of tallgrass prairie biomass and is widely used in 20,000 km2 of restoration. Specifically, we asked the following questions: (a) Whether ecotypes are locally adapted to regional climate in realistic ecological communities. (b) Does adaptive genetic variation underpin divergent phenotypes across the climate gradient? (c) Is there evidence of local adaptation if the plants are exposed to competition among ecotypes in mixed ecotype plots? Finally, (d) are local adaptation and genetic divergence related to climate? Reciprocal gardens were planted with 3 regional ecotypes (originating from dry, mesic, wet climate sources) of Andropogon gerardii across a precipitation gradient (500–1,200 mm/year) in the US Great Plains. We demonstrate local adaptation and differentiation of ecotypes in wet and dry environments. Surprisingly, the apparent generalist mesic ecotype performed comparably under all rainfall conditions. Ecotype performance was underpinned by differences in neutral diversity and candidate genes corroborating strong differences among ecotypes. Ecotype differentiation was related to climate, primarily rainfall. Without long‐term studies, wrong conclusions would have been reached based on the first two years. Further, restoring prairies with climate‐matched ecotypes is critical to future ecology, conservation, and sustainability under climate change. 相似文献
2.
S. D. JOHNSON H. KURZWEIL 《Botanical journal of the Linnean Society. Linnean Society of London》1998,127(3):179-194
Two spectacular new orchid species from the semi-arid Karoo region of South Africa are described here. Both have been confused with Satyrium erectum Sw. in the past, yet have clear diagnostic characters which justify their recognition as distinct species. Satyrium pulchrumS. Johnson & Kurzweil sp. nov. , known only from an isolated granite inselberg in Namaqualand, appears to be the sister taxon to S. erectum, whereas Satyrium pallens S. Johnson & Kurzweil sp. nov. , known from several populations along the southern margins of the Karoo, has closer affinities to Saprium longicolleLindl. These four species form a distinct monophyletic group characterized by several synapomorphies. The allopatric distribution pattern and considerable divergence in floral characters of the sister species suggest that speciation involved shifts in the pollination system of geographically isolated populations. 相似文献
3.
Intraspecific variation is central to our understanding of evolution and population ecology, yet its consequences for community ecology are poorly understood. Animal personality – consistent individual differences in suites of behaviours – may be particularly important for trophic dynamics, where predator personality can determine activity rates and patterns of attack. We used mesocosms with aquatic food webs in which the top predator (dragonfly nymphs) varied in activity and subsequent attack rates on zooplankton, and tested the effects of predator personality. We found support for four hypotheses: (1) active predators disproportionately reduce the abundance of prey, (2) active predators select for predator‐resistant prey species, (3) active predators strengthen trophic cascades (increase phytoplankton abundance) and (4) active predators are more likely to cannibalise one another, weakening all other trends when at high densities. These results suggest that intraspecific variation in predator personality is an important determinant of prey abundance, community composition and trophic cascades. 相似文献
4.
Francisco R. Barboza Jonne Kotta Florian Weinberger Veijo Jormalainen Patrik Kraufvelin Markus Molis Hendrik Schubert Henrik Pavia Gran M. Nylund Lena Kautsky Ellen Schagerstrm Esther Rickert Mahasweta Saha Stein Fredriksen Georg Martin Kaire Torn Ari Ruuskanen Martin Wahl 《Ecology and evolution》2019,9(16):9225-9238
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply. 相似文献
5.
Steven D. Johnson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1539):499-516
The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems. 相似文献
6.
Phenotypic variation among individuals and species is a fundamental principle of natural selection. In this review, we focus on numerous experiments involving the model species Daphnia (Crustacea) and categorize the factors, especially secondary ones, affecting intraspecific variations in inducible defense. Primary factors, such as predator type and density, determine the degree to which inducible defense expresses and increases or decreases. Secondary factors, on the other hand, act together with primary factors to inducible defense or without primary factors on inducible defense. The secondary factors increase intraspecies variation in inducible defense, and thus, the level of adaptation of organisms varies within species. Future research will explore the potential for new secondary factors, as well as the relative importance between factors needs to be clarified. 相似文献
7.
Pamella Akoth Ogada Thomas Debener Hans‐Michael Poehling 《Ecology and evolution》2016,6(21):7911-7920
The complexity of tospovirus–vector–host plant interaction is linked to a range of factors influencing vector's efficacy in virus transmission, leading to high variability in the transmission efficiency within vector populations. Main shortcomings of most studies are the missing information on the intrinsic potential of individual insects to serve as efficient vectors, both at phenotypic and at genotypic levels. Moreover, detailed analysis of vector competence heredity and monitoring the splitting of both genotypes and phenotypes in filial generations has not been reported. In this study, using the model system Frankliniella occidentalis and Tomato spotted wilt virus, we evaluated the inheritance and stability of the trait vector competence in a population through basic crossings of individually characterized partners, as well as virgin reproduction. We hypothesized that the trait is heritable in F. occidentalis and is controlled by a recessive allele. From the results, 83% and 94% of competent and noncompetent males respectively, inherited their status from their mothers. The trait was only expressed when females were homozygous for the corresponding allele. Furthermore, the allele frequencies were different between males and females, and the competent allele had the highest frequency in the population. These suggest that the trait vector competence is inherited in single recessive gene in F. occidentalis, for which the phenotype is determined by the haplodiploid mechanism. These findings are fundamental for our understanding of the temporal and spatial variability within vector populations with respect to the trait vector competence and at the same time offer an essential basis for further molecular studies. 相似文献
8.
Pär K. Ingvarsson Dongsheng Wang Junhui Wang Zhiqiang Wu Luke R. Tembrock Jianguo Zhang 《Molecular ecology》2015,24(19):4994-5005
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. 相似文献
9.
Kelsey J. R. P. Byers James P. Vela Foen Peng Jeffrey A. Riffell Harvey D. Bradshaw Jr 《The Plant journal : for cell and molecular biology》2014,80(6):1031-1042
Pollinator‐mediated reproductive isolation is a major factor in driving the diversification of flowering plants. Studies of floral traits involved in reproductive isolation have focused nearly exclusively on visual signals, such as flower color. The role of less obvious signals, such as floral scent, has been studied only recently. In particular, the genetics of floral volatiles involved in mediating differential pollinator visitation remains unknown. The bumblebee‐pollinated Mimulus lewisii and hummingbird‐pollinated Mimulus cardinalis are a model system for studying reproductive isolation via pollinator preference. We have shown that these two species differ in three floral terpenoid volatiles – d ‐limonene, β‐myrcene, and E‐β‐ocimene – that are attractive to bumblebee pollinators. By genetic mapping and in vitro analysis of enzyme activity we demonstrate that these interspecific differences are consistent with allelic variation at two loci, LIMONENE‐MYRCENE SYNTHASE (LMS) and OCIMENE SYNTHASE (OS). Mimulus lewisii LMS (MlLMS) and OS (MlOS) are expressed most strongly in floral tissue in the last stages of floral development. Mimulus cardinalis LMS (McLMS) is weakly expressed and has a nonsense mutation in exon 3. Mimulus cardinalis OS (McOS) is expressed similarly to MlOS, but the encoded McOS enzyme produces no E‐β‐ocimene. Recapitulating the M. cardinalis phenotype by reducing the expression of MlLMS by RNA interference in transgenic M. lewisii produces no behavioral difference in pollinating bumblebees; however, reducing MlOS expression produces a 6% decrease in visitation. Allelic variation at the OCIMENE SYNTHASE locus is likely to contribute to differential pollinator visitation, and thus promote reproductive isolation between M. lewisii and M. cardinalis. OCIMENE SYNTHASE joins a growing list of ‘speciation genes’ (‘barrier genes’) in flowering plants. 相似文献
10.
11.
12.
Atsushi Kawakita Ko Mochizuki Makoto Kato 《Biological journal of the Linnean Society. Linnean Society of London》2015,116(3):507-518
A major goal in the study of mutualism is to understand how co‐operation is maintained when mutualism may potentially turn into parasitism. Although certain mechanisms facilitate the persistence of mutualism, parasitic species have repeatedly evolved from mutualistic ancestors. However, documented examples of mutualism reversals are still rare. Leafflowers (Phyllantheae; Phyllanthaceae) include approximately 500 species that engage in obligate mutualism with leafflower moths (Epicephala; Gracillariidae), which actively pollinate flowers, and whose larvae feed on the resulting seeds. We found that the Taiwanese population of the Phyllanthus reticulatus species complex was associated with six sympatric Epicephala species, of which three were derived parasites that induced gall formation on flowers/buds and produced no seeds. Notably, two parasitic species have retained mutualistic pollination behaviour, suggesting that the parasitism was likely not selected for to reduce the cost of mutualism. We propose that the galling habit evolved as an adaptation to escape parasitism by a specialized braconid wasp. The tough gall produced by one species was almost free of braconid parasitism, and the swollen gall induced by the other species probably prevents attack as a result of the larger airspace inside the gall. Our findings suggest that the presence of a third‐party partner can greatly influence the evolutionary fate of mutualisms, regardless of whether the pairwise interaction continues to favour co‐operation. 相似文献
13.
Kaitlin S. Wilson Bruce A. Pond Glen S. Brown James A. Schaefer 《Diversity & distributions》2019,25(2):205-216
14.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of L. radiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r2 = 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within L. radiata using molecular and/or ecological methods in the future. 相似文献
15.
Kenichi W. Okamoto R. Brian Langerhans Rezoana Rashid Priyanga Amarasekare 《Biological journal of the Linnean Society. Linnean Society of London》2015,116(4):834-846
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels. 相似文献
16.
A. Sá‐Pinto M. Martínez‐Fernández C. López‐Fernández Z. Ferreira R. Pereira J. Gosálvez E. Rolán‐Alvarez 《Journal of evolutionary biology》2013,26(12):2750-2756
The role of post‐zygotic isolation in nonallopatric ecological speciation is still mostly unknown and information on the nature and strength of these barriers in well‐known speciation models is essential for a deeper understanding of such processes. The Galician ecotypes of the marine snail Littorina saxatilis represent one of the best studied cases of nonallopatric ecological speciation. Here, we test the existence of incipient post‐zygotic isolation by comparing the fertility of male hybrids with that of both pure forms [ridged and banded (RB) and smooth and unbanded (SU) ecotypes]. We analysed the degree of sperm DNA fragmentation (SDF) of individuals morphologically classified as RB, SU and hybrids, sampled from two locations. SDF analyses were chosen to study sperm quality because, in other animal species, SDF rates correlate with important parameters for speciation research, such as fertilization and abortion rates and viability of adult progeny. In the present work, hybrids showed significantly higher SDF rates than RB and SU males in one location and significantly higher variances in both locations. These results suggest the existence of an incipient post‐zygotic barrier, the strength of which may vary across the Galician shore, and highlight the potential of SDF analyses for speciation research. 相似文献
17.
18.
When individuals primarily associate with and learn from those who behave similarly, society and culture become closely tied. Sperm whales (Physeter macrocephalus) exhibit multilevel social structure, the levels of which are differentiated in part by characteristic cultural behaviors. Sperm whales are organized into sympatric clans, with distinctive vocal repertoires that are socially learned. Other behaviors, such as movement patterns and foraging, also differ among clans. Here we ask whether the clan partition also includes divergences in social behavior. Off the Galápagos Islands, members of two clans differed consistently in diving synchrony, heterogeneity, and temporal stability of social relationships. While number of associates (indicated by social unit, group, and cluster sizes) were similar between clans, Regular clan members dived more synchronously and had more homogeneous relationships than the Plus‐One clan members. Plus‐One social units had generally longer associations than those of the Regular clan. Differences in surface‐time coordination and quality of social relationships are likely byproducts of the clan segregation, which could affect alloparental care giving, therefore scaling up to differential calf survival rates between clans. This new dimension of behavioral divergence between sperm whale clans indicates that sympatric, socio‐cultural entities of nonhumans can also display characteristic social behavior. 相似文献
19.
Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation. 相似文献
20.
P. I. Marcora P. A. Tecco S. R. Zeballos I. Hensen 《Plant biology (Stuttgart, Germany)》2017,19(2):123-131
- Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
- Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
- The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
- These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.