共查询到20条相似文献,搜索用时 0 毫秒
1.
mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. 总被引:12,自引:9,他引:12
下载免费PDF全文

We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth. 相似文献
2.
Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo
下载免费PDF全文

Waskiewicz AJ Johnson JC Penn B Mahalingam M Kimball SR Cooper JA 《Molecular and cellular biology》1999,19(3):1871-1880
Eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA 5' cap and brings the mRNA into a complex with other protein synthesis initiation factors and ribosomes. The activity of mammalian eIF4E is important for the translation of capped mRNAs and is thought to be regulated by two mechanisms. First, eIF4E is sequestered by binding proteins, such as 4EBP1, in quiescent cells. Mitogens induce the release of eIF4E by stimulating the phosphorylation of 4EBP1. Second, mitogens and stresses induce the phosphorylation of eIF4E at Ser 209, increasing the affinity of eIF4E for capped mRNA and for an associated scaffolding protein, eIF4G. We previously showed that a mitogen- and stress-activated kinase, Mnk1, phosphorylates eIF4E in vitro at the physiological site. Here we show that Mnk1 regulates eIF4E phosphorylation in vivo. Mnk1 binds directly to eIF4G and copurifies with eIF4G and eIF4E. We identified activating phosphorylation sites in Mnk1 and developed dominant-negative and activated mutants. Expression of dominant-negative Mnk1 reduces mitogen-induced eIF4E phosphorylation, while expression of activated Mnk1 increases basal eIF4E phosphorylation. Activated mutant Mnk1 also induces extensive phosphorylation of eIF4E in cells overexpressing 4EBP1. This suggests that phosphorylation of eIF4E is catalyzed by Mnk1 or a very similar kinase in cells and is independent of other mitogenic signals that release eIF4E from 4EBP1. 相似文献
3.
Wakiyama M Saigoh M Ikeda K Suzuki A Miura K 《Bioscience, biotechnology, and biochemistry》2001,65(1):229-231
We have cloned the cDNA for Xenopus eukaryotic translation initiation factor 4E (eIF4E). Here we show that translation of a luciferase mRNA that contains the 5' untranslated region derived from Xenopus eIF4E is active in fertilized eggs, but is repressed in oocytes. The results suggest that the expression of Xenopus eIF4E is regulated at the translation level. 相似文献
4.
Evidence that eukaryotic initiation factor (eIF) 2 is a cap-binding protein that stimulates cap recognition by eIF-4B and eIF-4F 总被引:1,自引:0,他引:1
H A van Heugten M A Kasperaitis A A Thomas H O Voorma 《The Journal of biological chemistry》1991,266(11):7279-7284
We studied the mRNA-binding properties of eukaryotic initiation factor (eIF) 2. This Met-tRNA-binding factor interacts with the cap structure of reoviral mRNA in an ATP-independent manner. Both the beta- and gamma-subunit of eIF-2 are involved in the UV-induced cross-linking of eIF-2 to the cap. The interaction of eIF-2 with a messenger is sensitive to the cap analogue 7-methyl-guanosine 5'-triphosphate as measured by cross-linking and by mRNA retention on nitrocellulose filters. The cap-binding property of eIF-2 does not conflict with the current mRNA-binding model of initiation factors eIF-4A, -4B, and -4F: cross-linking of eIF-4E and of eIF-4B is stimulated by eIF-2. The eIF-2-mediated increase of eIF-4E interaction results in a decrease of the cross-linking of the beta- and gamma-subunits of eIF-2. The presence of GTP in the cross-linking assay interferes with the interaction of eIF-2 with the cap structure but does not inhibit the eIF-2 stimulated eIF-4E and -4B cross-linking. These observations indicate a role for eIF-2 in the mRNA recognition. 相似文献
5.
Up to 1 mol of phosphoryl groups was incorporated per mol of eukaryotic protein synthesis initiation factor (eIF) 4E following incubation of purified preparations of this factor with purified preparations of a protamine kinase from bovine kidney cytosol. By contrast, purified preparations of two forms of mitogen-activated protein kinase, casein kinase II and two forms of a distinct autophosphorylation-activated protein kinase exhibited little activity, if any, with eIF-4E. Together with previous observations, the results indicate that the protamine kinase could contribute to the insulin-stimulated phosphorylation of eIF-4E. 相似文献
6.
Gert C Scheper Barbara van Kollenburg Jianzhong Hu Yunjing Luo Dixie J Goss Christopher G Proud 《The Journal of biological chemistry》2002,277(5):3303-3309
In eukaryotes, a key step in the initiation of translation is the binding of the eukaryotic initiation factor 4E (eIF4E) to the cap structure of the mRNA. Subsequent recruitment of several components, including the small ribosomal subunit, is thought to allow migration of initiation complexes and recognition of the initiation codon. Mitogens and cytokines stimulate the phosphorylation of eIF4E at Ser(209), but the functional consequences of this modification have remained a major unresolved question. Using fluorescence spectroscopy and surface plasmon resonance techniques, we show that phosphorylation of eIF4E markedly reduces its affinity for capped RNA, primarily due to an increased rate of dissociation. Variant eIF4E proteins harboring negatively charged acidic residues at position 209 also showed decreased binding to capped RNA. Furthermore, a basic residue at position 159 was shown to be essential for cap binding. Although eIF4E-binding protein 1 greatly stabilized binding of phosphorylated eIF4E to capped RNA, in the presence of eIF4E-binding protein 1 the phosphorylated form still dissociated faster compared with nonphopshorylated eIF4E. The implications of our findings for the mechanism of translation initiation are discussed. 相似文献
7.
Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA. 总被引:2,自引:1,他引:2
下载免费PDF全文

mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell. 相似文献
8.
Two distinct cDNAs encoding protein synthesis initiation factor 4A (eIF-4A) were isolated from an Arabidopsis thaliana cDNA library and sequenced. The deduced amino acid sequences from the two cDNAs were compared to eIF-4A from tobacco, mouse and Saccharomyces cerevisiae. The putative ATP-binding sites and RNA helicase motifs were identified. 相似文献
9.
Morio T Yasukawa H Urushihara H Saito T Ochiai H Takeuchi I Maeda M Tanaka Y 《Biochimica et biophysica acta》2001,1519(1-2):65-69
We have identified a gene encoding a eukaryotic initiation factor 4E-binding protein (4E-BP) in the EST database of the Dictyostelium cDNA project. The Dictyostelium 4E-BP, designated febA (four e-binding), showed significant similarity to mammalian 4E-BPs. Northern blot analysis revealed that febA was expressed at a high level in the vegetative growth phase but the level of expression decreased during late development. The gene was shown to be non-essential since disruption of the gene had no severe effect; the null mutant proliferated normally and formed normal fruiting bodies. However, strains overexpressing the gene could not be established, suggesting that an excess of FebA protein may have a lethal effect on the cells. 相似文献
10.
Lachance PE Miron M Raught B Sonenberg N Lasko P 《Molecular and cellular biology》2002,22(6):1656-1663
Eukaryotic translation initiation factor 4E (eIF4E) binds to the cap structure at the 5' end of mRNAs and is a critical target for the control of protein synthesis. eIF4E is phosphorylated in many systems in response to extracellular stimuli, but biochemical evidence to date has been equivocal as to the biological significance of this modification. Here we use a genetic approach to this problem. We show that, in Drosophila melanogaster, homozygous eIF4E mutants arrest growth during larval development. In Drosophila eIF4EI, Ser251 corresponds to Ser209 of mammalian eIF4E, which is phosphorylated in response to extracellular signals. We find that, in vivo, eIF4EI Ser251 mutants cannot incorporate labeled phosphate. Furthermore, transgenic Drosophila organisms expressing eIF4E(Ser251Ala) in an eIF4E mutant background have reduced viability. Escapers develop more slowly than control siblings and are smaller. These genetic data provide evidence that eIF4E phosphorylation is biologically significant and is essential for normal growth and development. 相似文献
11.
L McKendrick S J Morley V M Pain R Jagus B Joshi 《European journal of biochemistry》2001,268(20):5375-5385
Eukaryotic translation initiation factor 4E (eIF4E) is essential for efficient translation of the vast majority of capped cellular mRNAs; it binds the 5'-methylated guanosine cap of mRNA and serves as a nucleation point for the assembly of the 48S preinitiation complex. eIF4E is phosphorylated in vivo at residue 209 of the human sequence. The phosphorylated form is often regarded as the active state of the protein, with ribosome-associated eIF4E enriched for the phosphorylated form and increased phosphorylation often correlated with upregulation of rates of protein synthesis. However, the only reported measured effect attributable to phosphorylation at the physiological site has been a relatively small increase in the affinity of eIF4E for the mRNA m7GTP cap structure. Here, we provide data to suggest that phosphorylation of eIF4E at Ser209 is not required for translation. eIF4E that is modified such that it cannot be phosphorylated (Ser209-->Ala), is unimpaired in its ability to restore translation to an eIF4E-dependent in vitro translation system. In addition, both the wild-type and mutant forms of eIF4E interact equally well with eIF4G, with the phosphorylation of eIF4E not required to effect the change in conformation of eIF4G that is required for efficient cleavage of eIF4G by L-protease. Furthermore, we show that wild-type and phosphorylation-site variants of eIF4E protein are equally able to rescue the lethal phenotype of eIF4E deletion in S. cerevisiae. 相似文献
12.
Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein
下载免费PDF全文

CPEB-mediated translation is important in early development and neuronal synaptic plasticity. Here, we describe a new eukaryotic initiation factor 4E (eIF4E) binding protein, Neuroguidin (Ngd), and its interaction with CPEB. In the mammalian nervous system, Ngd is detected as puncta in axons and dendrites and in growth cones and filopodia. Ngd contains three motifs that resemble those present in eIF4G, 4EBP, Cup, and Maskin, all of which are eIF4E binding proteins. Ngd binds eIF4E directly, and all three motifs must be deleted to abrogate the interaction between these two proteins. In injected Xenopus oocytes, Ngd binds CPEB and, most importantly, represses translation in a cytoplasmic polyadenylation element (CPE)-dependent manner. In Xenopus embryos, Ngd is found in both neural tube and neural crest cells. The injection of morpholino-containing antisense oligonucleotides directed against ngd mRNA disrupts neural tube closure and neural crest migration; however, the wild-type phenotype is restored by the injection of a rescuing ngd mRNA. These data suggest that Ngd guides neural development by regulating the translation of CPE-containing mRNAs. 相似文献
13.
It has been suggested that the cap-binding protein complex is involved in ATP-mediated melting of 5'-mRNA secondary structure to facilitate ribosome binding during initiation of translation in eukaryotic cells (Edery, I., Lee, K. A. W., and Sonenberg, N. (1984) Biochemistry 23, 2456-2462). Consequently, we have studied the interaction of dATP/ATP with the eukaryotic cap-binding protein complex by UV photoaffinity labeling. UV irradiation of the cap-binding protein complex in the presence of [alpha-32P]dATP/ATP resulted in the cross-linking of this compound to the 50-kDa polypeptide of the complex. This polypeptide is almost identical to the previously characterized eukaryotic initiation factor (eIF) 4A. We examined the ability of dATP/ATP to cross-link to eIF-4A and found that it cross-links less efficiently (approximately 60-fold on a molar basis) compared to the cross-linking obtained for the eIF-4A component of the cap-binding protein complex. Irradiation of purified eIF-4A together with the cap-binding protein complex in the presence of [alpha-32P]dATP resulted in greater than additive labeling of the eIF-4A component of the cap-binding protein complex and purified eIF-4A, suggesting a synergistic interaction between purified eIF-4A, the cap-binding protein complex, and dATP/ATP. We also report that photoaffinity labeling of eIF-4A and the eIF-4A component in the cap-binding protein complex is stimulated by eIF-4B, but not by other initiation factors or mRNA. 相似文献
14.
Translation of mRNA in eukaryotes begins with specific recognition of the 5' cap structure by the highly conserved protein, eIF4E. The thermodynamics of eIF4E interaction with nine chemical cap analogues has been studied by means of emission spectroscopy. High-sensitivity measurements of intrinsic protein fluorescence quenching upon cap binding provided equilibrium association constants in the temperature range of 279 to 314 K. A van't Hoff analysis yielded the negative binding enthalpies for the entire cap analogue series, -16.6 to -81 kJ mol(-1), and the entropies covering the range of +40.3 to -136 J mol(-1) K(-1) at 293 K. The main enthalpic contributions come from interactions of the phosphate chains and positively charged amino acids and the cation-pi stacking of 7-methylguanine with tryptophans. A nontrivial, statistically important isothermal enthalpy-entropy compensation has been detected (T(c) = 399 +/- 24 K), which points to significant fluctuations of apo-eIF4E and indicates that the cap-binding microstate lies 9.66 +/- 1.7 kJ mol(-1) below the mean energy of all available conformational states. For five cap analogues, large and positive heat capacity changes have been found. The values of DeltaC(p) degrees correlate with the free energies of eIF4E binding due to stiffening of the protein upon interaction with cap analogues. At biological temperatures, binding of the natural caps has both favorable enthalpy and favorable entropy. Thermodynamic coupling of cap-eIF4E association to intramolecular self-stacking of dinucleotide cap analogues strongly influences the enthalpies and entropies of the binding, but has a negligible effect on the resultant DeltaG degrees and DeltaC(p) degrees values. 相似文献
15.
16.
17.
18.
19.
Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G 总被引:5,自引:0,他引:5
The eukaryotic cap-binding complex eIF4F is an essential component of the translational machinery. Recognition of the mRNA cap structure through its subunit eIF4E is a requirement for the recruitment of other translation initiation factors to the mRNA 5'-end and thereby for the attachment of the 40 S ribosomal subunit. In this study, we have investigated the mechanistic basis of the observation that eIF4E binding to the cap is enhanced in the presence of the large eIF4F subunit, eIF4G. We show that eIF4E requires access to both the mRNA 5'-cap and eIF4G to form stable complexes with short RNAs. This stabilization can be achieved using fragments of eIF4G that contain the eIF4E binding site but not the RNA recognition motifs. Full-length eIF4G is shown to induce increased eIF4E binding to cap analogues that do not contain an RNA body. Both results show that interaction of eIF4G with the mRNA is not necessary to enhance cap binding by eIF4E. Moreover, we show that the effect of binding of full-length eIF4G on the cap affinity of eIF4E can be further modulated through binding of Pab1 to eIF4G. These data are consistent with a model in which heterotropic cooperativity underlies eIF4F function. 相似文献
20.
The eukaryotic initiation factor 4E (eIF4E) plays a pivotal role in the control of protein synthesis. eIF4E binds to the mRNA 5' cap structure, m(7)GpppN (where N is any nucleotide) and promotes ribosome binding to the mRNA. It was previously shown that a fraction of eIF4E localizes to the nucleus (Lejbkowicz, F., C. Goyer, A. Darveau, S. Neron, R. Lemieux, and N. Sonenberg. 1992. Proc. Natl. Acad. Sci. USA. 89:9612-9616). Here, we show that the nuclear eIF4E is present throughout the nucleoplasm, but is concentrated in speckled regions. Double label immunofluorescence confocal microscopy shows that eIF4E colocalizes with Sm and U1snRNP. We also demonstrate that eIF4E is specifically released from the speckles by the cap analogue m(7)GpppG in a cell permeabilization assay. However, eIF4E is not released from the speckles by RNase A treatment, suggesting that retention of eIF4E in the speckles is not RNA-mediated. 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) treatment of cells causes the condensation of eIF4E nuclear speckles. In addition, overexpression of the dual specificity kinase, Clk/Sty, but not of the catalytically inactive form, results in the dispersion of eIF4E nuclear speckles. 相似文献