首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The egg jelly-induced acrosome reaction of sea urchin sperm is accompanied by intracellular alkalinization and Ca2+ entry. We have previously shown that in the absence of egg jelly, NH4Cl, which increases intracellular pH (pHi), induces Ca2+ uptake and the acrosome reaction in sperm of the sea urchin, Strongylocentrotus purpuratus. Here we show that at a constant concentration of NH4Cl (20 mM) in seawater, sperm react less as external pH is lowered from the normal 8 to 7.25. The pH dependence of the NH4Cl response is not very sensitive to temperatures between 12 and 17 degrees C. NH4Cl (15-50 mM) stimulates Ca2+ uptake and acrosome reactions in sperm suspended in Na+-free seawater, a condition known to inhibit the inductive effect of jelly. Jelly does not further stimulate Ca2+ uptake of sperm preincubated in NH4Cl, indicating that once the permeability to Ca2+ is increased by raising the pHi, the jelly has no further effect. We have used the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide to follow the membrane potential change that occurs when NH4Cl is added. Depolarization (25 mV) is associated with the acrosome reaction when either the natural inducer, egg jelly, or NH4Cl is added to sperm. Response to both inducers is inhibited under conditions known to abolish the acrosome reaction, i.e., low-pH seawater and nisoldipine. These results indicate that the NH4Cl-induced depolarization that accompanies the reaction is probably due to the opening of channels that allow Ca2+ to enter the cell and not to the depolarization by NH4+ ions. High-K+ seawater, which depolarizes sperm, and tetraethylammonium, a K+ channel blocker, inhibit the jelly-induced depolarization and the acrosome reaction, but do not inhibit NH4Cl-induced changes. It has already been shown that nigericin promotes Ca2+ entry and the acrosome reaction in sea urchin sperm. We found that the action of this ionophore depends on the pH of normal seawater. In the absence of external Na+ (replaced by choline), nigericin does not induce the reaction and does not stimulate Ca2+ uptake.  相似文献   

2.
The acrosome reaction (AR) is an exocytotic event that allows sperm to recognize and fuse with the egg. In the sea urchin sperm this reaction is triggered by the outer investment of the egg, the jelly, which induces ionic movements leading to increases in intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), a K(+)-dependent transient hyperpolarization which may involve K+ channels, and a depolarization which depends on external Ca2+. The present paper explores the role of the hyperpolarization in the triggering of the acrosome reaction. The artificial hyperpolarization of Lytechinus pictus sperm with valinomycin in K(+)-free seawater raised the pHi, caused a small increase in 45Ca2+ uptake, and triggered some AR. When the cells were depolarized with KCl (30 mM) 40-60 sec after the induced hyperpolarization, the pHi decreased and there was a significant increase in 45Ca2+ uptake, [Ca2+]i, and the AR. This waiting time was necessary in order to allow the pHi change required for the AR to occur. Thus, the jelly-induced hyperpolarization may lead to the intracellular alkalinization required to trigger the AR, and, on its own or via pHi, may regulate Ca2+ transport systems involved in this process. Because of the key role played by K+ in the triggering of the AR, the presence and characteristics of ion channels in L. pictus isolated sperm plasma membranes are being explored. Planar lipid bilayers into which these membranes were incorporated by fusion displayed 85 pS single channel transitions which were cation selective.  相似文献   

3.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

4.
delta 9-Tetrahydrocannabinol (THC) and two other major cannabinoids derived from marihuana--cannabidiol (CBD) and cannabinol (CBN)--inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of sperm (Schuel et al., 1987). Sperm fertility depends on their motility and on their ability to undergo the acrosome reaction upon encountering the egg's jelly coat. Pretreatment of S. purpuratus sperm with THC prevents triggering of the acrosome reaction by solubilized egg jelly in a dose (0.1-100 microM) and time (0-5 min)-dependent manner. Induction of the acrosome reaction is inhibited in 88.9 +/- 2.3% of sperm pretreated with 100 microM THC for 5 min, while motility of THC-treated sperm is not reduced compared to solvent (vehicle) and seawater-treated controls. The acrosome reaction is inhibited 50% by pretreatment with 6.6 microM THC for 5 min and with 100 microM THC after 20.8 sec. CBN and CBD at comparable concentrations inhibit the acrosome reaction by egg jelly in a manner similar to THC. THC does not inhibit the acrosome reaction artificially induced by ionomycin, which promotes Ca2+ influx, and nigericin, which promotes K+ efflux. THC partially inhibits (20-30%) the acrosome reaction induced by A23187, which promotes Ca2+ influx, and NH4OH, which raises the internal pH of the sperm. Addition of monensin, which promotes Na+ influx to egg jelly or to A23187, does not overcome the THC inhibition. Inhibition of the egg jelly-induced acrosome reaction by THC produces a corresponding reduction in the fertilizing capacity of the sperm. The adverse effects of THC on the acrosome reaction and sperm fertility are reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Sea urchin sperm must undergo the acrosome reaction to fertilize eggs. The natural inducer of this reaction is the most external coat of the egg, named 'jelly'. The ionic composition of the extracellular and intracellular media and the permeability properties of the sperm plasma membrane are fundamental in this reaction. As Ca2+ is required for the acrosome reaction to occur, its intracellular concentration ([Ca2+]i) was measured with fura-2. In 10 mM Ca2+, egg jelly induced the acrosome reaction and an increase in [Ca2+]i that lasted for several minutes. However, at 0.5 or 2 mM Ca2+, it became evident that the Ca2+-influx pathway activated by jelly opened only for a few seconds; this prevented both the full increase in [Ca2+]i and the acrosome reaction even after the concentration of Ca2+ was raised to 10 mM. In the presence of jelly, the time this permeability pathway remained open was inversely related to the extracellular concentration of Ca2+ ([ Ca2+]e). Using Bisoxonol (a permeant fluorescent membrane potential probe), it was found that the jelly-induced depolarization depended on [Ca2+]e and was proportional to the increase in [Ca2+]i. Since [Ca2+]i could affect the jelly-induced Ca2+ influx through calmodulin, two of its antagonists, trifluoperazine and W-7, were tested. Both compounds blocked the acrosome reaction by inhibiting the jelly-induced increase in [Ca2+]i. W-5 at the same concentration had no effect. The results suggest that one of the jelly-activated Ca2+-influx pathways, probably a channel, is the target of the calmodulin antagonists.  相似文献   

6.
In the starfish, Asterias amurensis, the cooperation of three components of the egg jelly, namely ARIS (acrosome reaction-inducing substance), Co-ARIS and asterosap, is responsible for the induction of acrosome reaction. For the induction, ARIS alone is enough in high-Ca2+ or high-pH seawater, but, besides ARIS, the addition of either Co-ARIS or asterosap is required in normal seawater. Asterosap transiently increased both the intracellular pH (pHi) and Ca2+ ([Ca2+]i), while ARIS slightly elevated the basal level of [Ca2+]i. However, a sustained elevation of [Ca2+]i and acrosome reaction occurred if sperm were simultaneously treated with ARIS and asterosap. EGTA inhibited the sustained [Ca2+]i elevation and acrosome reaction. The sustained [Ca2+]i elevation and acrosome reaction were highly susceptible to SKF96365 and Ni2+, specific blockers of the store-operated Ca2+ channel (SOC). These results suggest that sustained [Ca2+]i elevation, mediated by the SOC-like channel, is a prerequisite for the acrosome reaction. In high-pH seawater, ARIS alone induced a prominent [Ca2+]i increase and acrosome reaction, which were similarly sensitive to SKF96365. The acrosome reaction was effectively induced by ARIS alone when pHi was artificially increased to more than 7.7. Asterosap increased pHi from 7.6 +/- 0.1 to 7.7 +/- 0.1. Furthermore, the sustained [Ca2+]i elevation and acrosome reaction, induced by a combination of ARIS and asterosap, were drastically inhibited by a slight reduction in pHi. Taking these results into account, we suggest that an asterosap-induced pHi elevation is required for triggering the ARIS-induced sustained [Ca2+]i elevation and consequent acrosome reaction.  相似文献   

7.
The N‐methyl d ‐aspartate type glutamate receptor (NMDAR) is a ligand‐gated cation channel that causes Ca2+ influx in nerve cells. An NMDAR agonist is effective to the sperm motility in fowls, although the actual role of NMDAR in sperm function is unknown. In the present study, RNA‐seq of the spermatogenic testes suggested the presence of NMDAR in the sperm of the newt Cynops pyrrhogaster. Glutamate of at least 0.7 ± 0.5 mM was detected in the egg‐jelly substances along with acrosome reaction‐inducing substance (ARIS) and sperm motility‐initiating substance (SMIS). In the egg‐jelly extract (JE) that included the ARIS and SMIS, the acrosome reaction was inhibited by a NMDAR antagonists, memantine and MK801. MK801 also inhibited the spontaneous acrosome reaction in Steinberg's salt solution (ST). Furthermore, memantine and MK801 suppressed the progressive motility of the sperm in JE and spontaneous waving of the undulating membrane, which is the tail structure giving thrust for forward motility, in ST. The spontaneous waving of the undulating membrane was promoted when Mg2+, which blocks Ca2+ influx through gated NMDARs, was removed from the ST. In addition, the ARIS‐induced acrosome reaction was inhibited by a selective antagonist of the transient receptor potential vanilloid 4, whose activation might result in the membrane depolarization to release Mg2+ from the NMDAR. These results suggest that NMDAR acts together with other cation channels in the induction of the acrosome reaction and motility of the sperm during the fertilization process of C. pyrrhogaster.  相似文献   

8.
When sperm of Strongylocentrotus purpuratus or Lytechinus pictus are diluted into seawater, motility is initiated; and when exposed to egg jelly, an acrosome reaction is induced. In the presence of a variety of structurally different metal chelators (0.1-1 mM EDTA, EGTA, phenanthroline, dipyridyl, cysteine, or dithiothreitol), motility initiation is delayed and the acrosome reaction is inhibited. Of the metals detected in the sperm of these two species, very low levels of Zn+2 (0.1 microM free Zn+2) uniquely prevent this chelator inhibition. L. pictus sperm concentrate 65Zn+2 from seawater, and EDTA removes 50% of the accumulated 65Zn+2 by 5 min. Since both sperm motility and acrosome reactions are in part regulated by intracellular pH (pHi), the effect of chelators on the sperm pHi was examined by using the fluorescent pH sensitive probe, 9-aminoacridine, EDTA depresses sperm pHi in both species, and 0.1 microM free Zn+2 reverses this pHi depression. When sperm are diluted into media that contain chelators, both NH4Cl and monensin (a Na+/H+ ionophore) increase the sperm pHi and reverse the chelator inhibition of sperm motility and acrosome reactions. The results of this study are consistent with the involvement of a trace metal (probably zinc) in the pHi regulation of sea urchin sperm and indicate a likely mechanism for the previously observed effects of chelators on sperm motility and acrosome reactions.  相似文献   

9.
Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this cell. Sea urchin sperm Ca2+ channels are being studied by fusing isolated plasma membranes into planar lipid bilayers. With this strategy, a Ca2+ channel has been detected with the following characteristics: (a) the channel exhibits a high mainstate conductance (gamma MS) of 172 pS in 50 mM CaCl2 solutions with voltage-dependent decaying to smaller conductance states at negative Em; (b) the channel is blocked by millimolar concentrations of Cd2+, Co2+, and La3+, which also inhibit the egg jelly-induced acrosome reaction; (c) the gamma MS conductance sequence for the tested divalent cations is the following: Ba2+ greater than Sr2+ greater than Ca2+; and (d) the channel discriminates poorly for divalent over monovalent cations (PCa/PNa = 5.9). The sperm Ca2+ channel gamma MS rectifies in symmetrical 10 mM CaCl2, having a maximal slope conductance value of 94 pS at +100 mV applied to the cis side of the bilayer. Under these conditions, a different single-channel activity of lesser conductance became apparent above the gamma MS current at positive membrane potentials. Also in 10 mM Ca2+ solutions, Mg2+ permeates through the main channel when added to the cis side with a PCa/PMg = 2.9, while it blocks when added to the trans side. In 50 mM Ca2+ solutions, the gamma MS open probability has values of 1.0 at voltages more positive than -40 mV and decreases at more negatives potentials, following a Boltzmann function with an E0.5 = -72 mV and an apparent gating charge value of 3.9. These results describe a novel Ca2(+)-selective channel, and suggest that the main channel works as a single multipore assembly.  相似文献   

10.
When sperm of the sea urchin, Hemicentrotus pulcherrimus , were exposed to high pH (9.0) sea water, they showed large increases in intracellular Ca2+ ([Ca2+]i) and pH (pHi) and underwent the acrosome reaction (AR) without the aid of the egg jelly. Not only [Ca2+]i increase but also pHi rise did not occur under Ca2+-free conditions. Both the increases in [Ca2+]i and pHi and the AR by high pH were inhibited by a Ca2+ channel blockers, verapamil and nisoldipine, and by a lectin, wheat germ agglutinin (WGA) which interacts with a 220 kD membrane glycoprotein of sperm. These reagents inhibited also the AR by the egg jelly. The inhibitory effects of WGA were immediately canceled by the addition of N-acetyl-D-glucosamine, a sugar which is known to remove WGA from its binding site. These results suggest that 1) the same Ca2+ transport system is activated by high external pH and the egg jelly, 2) increase in [Ca2+]i is prerequisite for the stimulation of the H+-efflux system(s) and 3) the 220 kD WGA-binding membrane protein functions as a regulator protein of Ca2+ transport system.  相似文献   

11.
Egg jelly induces the degradation of histones as well as the acrosome reaction in the spermatozoa of Asterina pectinifera . Much similar degradation of histones without any apparent morphological changes such as the acrosome reaction was induced in the spermatozoa by merely dispersing them into Na+-free seawater. It required external Ca2+ much less than the jelly-induced one in normal seawater, and was not susceptible to Ca2+-channel antagonists, verapamil and diltiazem. Once spermatozoa were incubated with egg jelly in Ca2+-free seawater, they did not undergo the histone degradation even after subsequent addition of Ca2+, but Na+-free seawater rescued such blockage. Spontaneous acrosome reaction occurred in seawater containing 10–30 mM Na+ in a Ca2+-dependent manner. This reaction was accompanied by a rapid increase in intracellular pH (pHi) followed by a large pHi decrease. Diltiazem blocked a large decrease in pHi but scarcely inhibited the acrosome reaction induced by low-Na+ seawater. Increasing K+ inhibited both pHi changes and the acrosome reaction induced by low-Na+ seawater. Decreasing pH of seawater also inhibited the pHi changes but did not affect the acrosome reaction. Strontium was also effective to induce a rapid increase, followed by a gradual decrease, in pHi and the acrosome reaction.  相似文献   

12.
An essential initial step in fertilization in the sea urchin Strongylocentrotus purpuratus is an intracellular membrane fusion event in the sperm known as the acrosome reaction. This Ca2+-dependent, exocytotic process involves fusion of the membrane of the acrosomal vesicle and the plasma membrane. Recently, metalloendoproteases requiring divalent metals have been implicated in several Ca2+-dependent membrane fusion events in other biological systems. In view of the suggested involvement of Zn2+ in the sea urchin sperm acrosome reaction (Clapper, D.L., Davis, J.A., Lamothe, P.J., Patton, C., and Epel, D. (1985) J. Cell Biol. 100, 1817-1824) and the fact that Zn2+ is a metal cofactor for metalloendoproteases, we investigated the potential role of this protease in the acrosome reaction. A soluble metalloendoprotease was demonstrated and characterized in sperm homogenates using the fluorogenic protease substrate succinyl-alanine-alanine-phenylalanine-4-aminomethylcoumarin. The protease was inhibited by the metal chelators EDTA and 1,10-phenanthroline, and activity of the inactive apoenzyme could be reconstituted with Zn2+. The metalloendoprotease substrate and inhibitors blocked the acrosome reaction induced either by egg jelly coat or by ionophore, but had no effect on the influx of Ca2+. These observations suggest that inhibition occurs at a step independent of Ca2+ entry. Overall, the results of this study provide strong indirect evidence that the acrosome reaction requires the action of metalloendoprotease.  相似文献   

13.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

14.
The acrosome reaction of newt sperm is induced at the surface of egg jelly and the acrosome-reacted sperm acquire the ability to bind to the vitelline envelope. However, because the substance that induces the acrosome reaction has not been identified, the mechanism by which the acrosome-reacted sperm bind to the vitelline envelope remains unclear. We found here that a Dolichos biforus agglutinin (DBA) specifically mimicked the acrosome reaction immediately upon its addition in the presence of milimolar level Ca(2+). Fluorescein isothiocyanate-labeled DBA bound specifically to the acrosomal cap of the intact sperm in the presence of a Ca(2+)-chelating agent, EDTA, suggesting that binding of DBA to the native receptor for the egg jelly substance on the acrosomal region took the place of the egg jelly substance-induced acrosome reaction. In contrast, the sperm that had been acrosome reacted by DBA treatment did not bind to the vitelline envelope of the egg whose jelly layers were removed. Subsequent addition of jelly extract caused the sperm binding to vitelline envelope, indicating that the egg jelly of the newt contains substances that are involved in not only inducing the acrosome reaction but also binding to the vitelline envelope. This is the first demonstration of the involvement of egg jelly substance in the binding of acrosome-reacted sperm to the vitelline envelope.  相似文献   

15.
Sperm from the toad Bufo arenarum must penetrate the egg jelly before reaching the vitelline envelope (VE), where the acrosome reaction is triggered. When the jelly coat is removed, sperm still bind to the VE, but acrosomal exocytosis is not promoted. Our previous work demonstrated that diffusible substances of the jelly coat, termed "egg water" (EW), triggered capacitation-like changes in B. arenarum sperm, promoting the acquisition of a transient fertilizing capacity. In the present work, we correlated this fertilizing capacity with the ability of the sperm to undergo the acrosome reaction, further substantiating the role of the jelly coat in fertilization. When sperm were exposed to the VE, only those preincubated in EW for 5 or 8 min underwent an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which led to acrosomal exocytosis. Responsiveness to the VE was not acquired on preincubation in EW for 2 or 15 min or in Ringer solution regardless of the preincubation time. In contrast, depletion of intracellular Ca(2+) stores (induced by thapsigargin) promoted [Ca(2+)](i) rise and the acrosome reaction even in sperm that were not exposed to EW. Acrosomal exocytosis was blocked by the presence of Ca(2+) chelators independent of whether a physiological or pharmacological stimulus was used. However, Ni(2+) and mibefradil prevented [Ca(2+)](i) rise and the acrosome reaction of sperm exposed to the VE but not of sperm exposed to thapsigargin. These data suggest that the acrosomal responsiveness of B. arenarum sperm, present during a narrow period, is acquired during EW incubation and involves the modulation of a voltage-dependent Ca(2+) channel.  相似文献   

16.
Sea urchin sperm respond to egg factors with changes in the ionic permeability of their plasma membrane. It has been previously shown that plasma membranes isolated preferentially from sea urchin sperm flagella respond to egg jelly increasing their Ca2+ and Na+ uptake (Darszon et al. (1984) Eur. J. Biochem. 144, 515-522). However, the egg jelly induced acrosome reaction occurs in the sperm head, and there is evidence for an heterogeneous distribution of plasma membrane components within the various regions of this cell. We here report a method for purifying sperm head membranes using positively charged beads according to Jacobson (1977) Biochim. Biophys. Acta 471, 331-335). Under the transmission electron microscope these membranes appeared homogeneous and apparently free of internal membranes. The yield of the preparation was 0.9% of the total protein in the sperm homogenate. The preparation contained less than 5% of the mitochondrial marker cytochrome oxidase, and 10% of the total DNA/mg protein. Surface labeling with 125I indicated a 2.5-3-fold enrichment in specific activity of the head membranes with respect to whole sperm. The SDS band pattern and the lipid composition of this preparation were different from those of isolated flagellar membranes. Phosphatidylcholine was higher in the head membranes, while phosphatidylserine and phosphatidylethanolamine were lower. The head membranes displayed a 1.7-2.3-fold higher Ca2+-ATPase activity and a 2.5-fold lower Na+/K+-ATPase activity, than the flagellar membranes. These results are consistent with a heterogeneous distribution of membrane components along the sea urchin sperm plasma membranes. Isolated head membranes sonicated in the presence of soybean phospholipid liposomes responded to egg jelly with a species-specific increase in Ca2+ and Na+ uptake. As in whole sperm, Ca2+ uptake was inhibited by the Ca2+ channel blocker nisoldipine. A close analog of this compound, [3H]nitrendipine, binds with high affinity to head membranes in a saturable, reversible manner, showing a Kd and Bmax of 31 nM and 5.3 pmol/mg protein, respectively.  相似文献   

17.
The sperm acrosome reaction occurs after the binding of the capacitated sperm to the egg zona pellucida. This study describes a novel mode of regulation of the sperm epidermal growth factor receptor (EGFR) under physiological conditions and its relevance to the acrosome reaction. Ouabain, a known Na/K ATPase blocker is present in the blood and in the female reproductive tract. We show here that physiological concentrations (nM) of ouabain enhance phosphorylation of EGFR on tyr-845, stimulate Ca2+ influx and induce the acrosome reaction in sperm. These effects could be seen only in the presence of very low concentrations of EGF (0.1 ng/ml or 0.016 nM) added together with nano-molar ouabain. Phosphorylation, Ca2+ influx, and the acrosome reaction are inhibited by an EGFR blocker, suggesting that trans-activation of the EGFR is involved. Moreover, our data revealed that protein kinase A and the family of tyrosine kinase, SRC, shown before to be involved in EGFR activation in sperm, mediate the acrosome reaction induced by ouabain. Ouabain alone (without EGF) at relatively high concentration (10 µM) could enhance EGFR phosphorylation, Ca2+ influx and acrosome reaction, and these processes were inhibited by EGFR blockers. Moreover, we show here that PKA and SRC family are involved in the activation of EGFR by 10 µM ouabain, further demonstrating that ouabain induces the acrosome reaction by a mechanism mediated by the trans-activation of EGFR. In conclusion, this study describes an interesting regulatory path of EGFR by physiological concentrations of ouabain and EGF found in the female reproductive tract. Neither of these compounds can activate the EGFR alone at such low physiological levels; however, when both are present, the interaction of ouabain with the Na/K ATPase leads to the priming of the EGFR, which undergoes its full activation by EGF.  相似文献   

18.
Before a sperm can fertilize an egg it must undergo a final activation step induced by the egg termed the acrosome reaction. During the acrosome reaction a lysosome-related organelle, the acrosome, fuses with the plasma membrane to release hydrolytic enzymes and expose an egg-binding protein. Because NAADP (nicotinic acid adenine dinucleotide phosphate) releases Ca2+ from acidic lysosome-related organelles in other cell types, we investigated a possible role for NAADP in mediating the acrosome reaction. We report that NAADP binds with high affinity to permeabilized sea urchin sperm. Moreover, we used Mn2+ quenching of luminal fura-2 and 45Ca2+ to directly demonstrate NAADP regulation of a cation channel on the acrosome. Additionally, we show that NAADP synthesis occurs through base exchange and is driven by an increase in Ca2+. We propose a new model for acrosome reaction signaling in which Ca2+ influx initiated by egg jelly stimulates NAADP synthesis and that this NAADP acts on its receptor/channel on the acrosome to release Ca2+ to drive acrosomal exocytosis.  相似文献   

19.
P F Blackmore 《Steroids》1999,64(1-2):149-156
Progesterone rapidly increased intracellular free calcium ([Ca2+]i) in human sperm, removal of extracellular Ca2+ prevented the increase in [Ca2+]i. The Ca2+ influx was not blocked by the T-type Ca2+ channel blocker mibefradil. However T-type calcium channels do appear to be present in human sperm because the neoglycoprotein mannose-albumin, an inducer of the acrosome reaction, was able to promote Ca2+ influx, which was blocked by mibefradil and more potently inhibited by Ni2+ than Cd2+. The receptor for progesterone that promotes the Ca2+ influx was located on the plasma membrane using FITC-progesterone-albumin. It is concluded that progesterone stimulates Ca2+ influx in human sperm via a unique Ca2+ channel possibly similar to a store-operated channel (SOC) or a receptor-operated channel (ROC). We have found that progesterone metabolites, such as pregnanolone and pregnanediol, promote a rapid rise in [Ca2+]i and aggregation in human platelets, similar to that observed with thrombin. The increase in [Ca2+]i was prevented when extracellular Ca2+ was removed or by the SOC inhibitor SKF-96365. The phospholipase C inhibitor U-73122 also prevented the increase in [Ca2+]i, suggesting that these metabolites interact with a cell surface receptor on the platelet to activate phospholipase C to produce inositol-P3, which mobilizes intracellular Ca2+, thereby activating the SOC in the plasma membrane. Progesterone and estradiol conjugated to albumin, also produced a rapid increase in [Ca2+]i, which was prevented by Ca2+ removal from the medium or when SKF-96365 or U-73122 were added. It is proposed that human platelets possess cell surface receptors for steroids.  相似文献   

20.
The lectin wheat germ agglutinin (WGA) inhibited the egg jelly-induced acrosome reaction (AR) of sperm of the sea urchin, Strongylocentrotus intermedius . Fluorescein-conjugated WGA applied to sperm bound to the acrosomal region, to the midpiece, and to the tip of the flagellum. These effects were not observed in the presence of N-acetly-D-glucosamine. When the egg jelly was replaced by artificial AR inducers such as A23187 or nigericin, the AR was not inhibited by WGA. Results obtained using a Ca2+ indicator fura-2, a pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF) and a membrane potential sensitive dye 3,3'-dipentyl 2,2'-dioxacarbocyanine [diO-C5(3)] showed that WGA suppresses the egg jelly-induced influx of Ca2+ and slightly suppresses the efflux of H+ caused by the egg jelly, whereas the depolarization of the plasma membrane by the egg jelly is remarkably amplified by the treatment with WGA. These results suggest that WGA affects the regulatory system of the ion fluxes associated with the AR. The target protein of WGA (WGA-binding protein) was a membrane glycoprotein of 260 kD under non-reducing condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号