首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

2.
A comparison of the proteins synthesized in human cells at late times after infection with adenovirus (Ad2) and with the adeno-simian virus 40 (SV40) hybrid viruses revealed polypeptides of 30,000 and 92,000 molecular weight specific for the hybrid viruses Ad2+ND1 and Ad2+ND4, respectively. Cell-free translation of SV40-specific mRNA, prepared from these cells by hybridization of total cytoplasmic RNA to SV40 DNA, showed that the mRNA's specifying these two polypeptides were at least partially encoded by the SV40 portion of the hybrid viruses. Cell-free translation of SV40-specific mRNA prepared from monkey cells infected with SV40 produced polypeptides of 40,000, 43,000, 48,500, and 92,000 molecular weight. The SV40 and Ad2+ND4 92,000-molecular-weight polypeptides made in vitro were very similar in electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels to the polypeptide precipitated by Tegtmeyer (1974) with SV40 anti-T serum.  相似文献   

3.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

4.
5.
Human adenovirus type 2 (Ad2) grows poorly in monkey cells, although this defect can be overcome by co-infection with simian virus 40 (SV40). The nondefective Ad2-SV40 hybrid virus, Ad2(+)ND1, replicates efficiently in both human and African green monkey kidney cells, presumably due to the insertion of SV40 sequences into the Ad2 DNA. Several mutants of Ad2(+)ND1 have been isolated that grow and plaque poorly in monkey cells, although they retain the ability to replicate and plaque efficiently in HeLa cells. One of these mutants (H39) has been examined in detail. Studies comparing the DNA of the mutant with Ad2(+)ND1 either by the cleavage patterns produced by Escherichia coli R.RI restriction endonuclease digestion or by heteroduplexing reveal no differences. The pattern of protein synthesis of Ad2(+)ND1 and H39 in monkey cells is quite different with the mutant resembling Ad2, which is defective in the synthesis of late proteins. However, in human cells, the proteins synthesized by H39 and the parent Ad2(+)ND1 are very similar. The production of SV40 U antigen in H39-infected cells is different from that in Ad2(+)ND1-infected cells. Finally, the growth of H39 in monkey cells can be complemented by SV40.  相似文献   

6.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

7.
HeLa cells infected with the nondefective adenovirus type 2-simian virus 40 hybrid viruses Ad2+ND1 or Ad2+ND2 were analyzed for cell surface location of the SV40-specific hybrid virus proteins by indirect immunofluorescence microscopy. Two different batches of sera from SV40 tumor-bearing hamsters, serum from SV40 tumor-bearing mice, or two different antisera prepared against purified sodium dodecyl sulfate-denatured SV40 T-antigen, respectively, were used. All sera were shown to exhibit comparable T- and U-antibody titers and to specifically immunoprecipitate the SV40-specific proteins from cell extracts of Ad2+ND2-infected cells. Whereas analysis of living, hybrid virus-infected HeLa cells did not yield conclusive results, analysis of Formalin-fixed cells resulted in positive cell surface fluorescence with both Ad2+ND1- and Ad2+ND2-infected HeLa cells when antisera prepared against sodium dodecyl sulfate-denatured SV40 T-antigen were used as first antibody. In contrast, sera from SV40 tumor-bearing animals were not or only very weakly able to stain the surfaces of these cells. The fact that the tumor sera had comparable or even higher T- and U-antibody titers than the antisera against sodium dodecyl sulfate-denatured T-antigen but were not able to recognize SV40-specific proteins on the cell surface suggests that SV40 tumor-specific transplantation antigen may be an antigenic entity different from T- or U-antigen.  相似文献   

8.
9.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), differs from the defective Ad-SV40 hybrid populations previously described, in that this hybrid virus can replicate without the aid of nonhybrid adenovirus helper. Consequently, the deoxyribonucleic acid (DNA) from this virus, which can be obtained free of nonhybrid adenovirus DNA, is well suited for biophysical studies on Ad-SV40 hybrid DNA. Such studies have been performed and demonstrate Ad2(+)ND(1) DNA to have a buoyant density (1.715 g/cm(3)) and thermal denaturation profile (T(m) = 75.1 C) almost identical with nonhybrid Ad2 DNA. Furthermore, its molecular weight, as determined by analytical zone sedimentation and electron microscopy, was 22 x 10(6) to 25 x 10(6) daltons, which is also very similar to that determined for Ad2. Electron micrographs showed all of the hybrid molecules to be double-stranded and linear. By using this determination of the molecular weight of Ad2(+)ND(1) DNA and assuming that 1% of this molecule consists of covalently linked SV40 DNA (see companion paper), we calculate that the hybrid DNA molecule contains 220 x 10(3) to 250 x 10(3) daltons of SV40 DNA, or the equivalent of one-tenth of the SV40 genome.  相似文献   

10.
Ad2(+)ND(1), a nondefective hybrid virus containing a segment of the early region of simian virus 40 (SV40) DNA covalently inserted into the human adenovirus 2 genome, enhances the growth of human adenoviruses in simian cells and induces the SV40 U antigen. This hybrid previously has been shown to code for a 28,000 (28K) molecular weight protein not present in wild-type adenovirus 2-infected cells. By radioimmunoprecipitation using sera from hamsters bearing SV40-specific tumors, we have established that the Ad2(+)ND(1)-induced 28K protein is SV40-specific. This Ad2(+)ND(1)-induced protein is synthesized as a 30K molecular weight precursor, which is detectable only when infected cells are pulse-labeled in the presence of the protease inhibitor tosylamino phenylethyl chloromethyl ketone. Upon fractionation of labeled cell extracts, about 80% of the 28K protein is found in the plasma membrane fraction, whereas the remaining 20% is associated with the outer nuclear membrane. This protein is not detectable either in the nucleus or in the cytoplasm. Blockage of proteolytic cleavage by tosylamino phenylethyl chloromethyl ketone did not alter the topographic distribution of this SV40-specific protein, although the amount of the precursor protein in the outer nuclear membrane increased fourfold while that in the plasma membrane was proportionately decreased. This result suggests that the 28K protein is transferred from the outer nuclear membrane to the plasma membrane after posttranslational cleavage of the 30K precursor polypeptide. These data offer further support to the proposal that the 28K protein contains the determinants for SV40 U antigen and is responsible for SV40 enhancement of adenovirus growth in simian cells.  相似文献   

11.
A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2(+)ND(1) virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2(+)ND(1) molecule. From the results obtained, it was estimated that 1% of the Ad2(+)ND(1) DNA consists of SV40 nucleotide sequences.  相似文献   

12.
Ad2+ND4del is an adenovirus type 2-simian virus 40 hybrid virus nondefective for growth in human cells. The virus was first observed when stocks of Ad2+ND4, a hybrid isolated from primary monkey kidney cells, were propagated in human cells. This paper describes the DNA sequence at two sites of DNA recombination, the site of the left adenovirus type 2-simian virus 40 junction and the site of a deletion of internal simian virus 40 sequences. Since the deletion was observed when the virus was switched from monkey to human cells, an analysis of gene expression in the region of DNA rearrangement may prove useful for the elucidation of molecular events that accompany virus growth in different hosts.  相似文献   

13.
Ad2(+)ND(1), a nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, has been previously shown to contain a small segment of the SV40 genome covalently linked to Ad2 deoxyribonucleic acid (DNA). The SV40 portion of this hybrid virus has been characterized by relating the SV40-specific ribonucleic acid (RNA) sequences transcribed from the Ad2(+)ND(1) DNA to those transcribed from the DNA of SV40 itself. RNA-DNA hybridization-competition studies indicate that the SV40 component of Ad2(+)ND(1) consists of some, but not all, of that part of the SV40 genome which is transcribed early, i.e., prior to viral DNA replication, in SV40 lytic infection.  相似文献   

14.
D F Klessig  T Grodzicker 《Cell》1979,17(4):957-966
Five host-range mutants (Ad2hr400–hr403, Ad5hr404) of human adenovirus serotype 2 and 5 (Ad2 and Ad5) which overcome the block to growth of wild-type adenovirus in monkey cells have been isolated. They form plaques and multiply efficiently in both monkey and human cells. The alteration in each of these mutants allows the full expression of all viral late genes, in marked contrast to the depressed synthesis of many late proteins in monkey cells infected with the parental Ad2 or Ad5. The altered gene encodes a diffusible product, since the mutation acts in trans to enhance the synthesis of wild-type Ad3 late proteins during co-infections of monkey cells with Ad2hr400 and Ad3. Restriction enzyme analysis of the genomes of all the host-range mutants show that none of them contain major alterations. In addition, an earlier report (Klessig and Hassell, 1978) indicated that Ad2hr400 does not contain SV40 sequences, which in some adenovirus-SV40 hybrid viruses allows efficient multiplication in monkey cells. The mutation responsible for the extended host range has been physically mapped by marker rescue experiments using isolated restriction enzyme fragments of the mutants to transfer the new phenotype to wild-type adenovirus. The alteration in each of the five mutants is located in a region (coordinates 62–70.7; coordinates 62–68 for Ad5hr404) which encodes predominantly the 72K DNA binding protein. More detailed mapping using Ad2hr400 fragments places the mutation (coordinates 62.9–65.6) entirely within the 72K gene. The multifunctional nature of the 72K protein and some of its similarities to SV40 T antigen are discussed.  相似文献   

15.
Previous work has shown that cells infected with the non-defective adenovirus 2-simian virus 40 hybrid viruses, Ad2+ND2 and Ad2+ND4 synthesize more than one SV404 large T antigen-related protein. These proteins overlap in amino acid sequence and have their carboxy-terminal sequences in common (Mann et al., 1977). We have characterized the messenger RNAs coding for these SV40-specific proteins. By translating in vitro SV40-specific mRNA isolated from cells infected with these viruses we have shown that each SV40-specific protein can incorporate 35S-labeled formyl methionine at its N-terminus donated by [35S]-fmet-tRNAfmet, demonstrating that each protein results from a de novo initiation event. Furthermore, analysis of the N-terminal tryptic peptides of these proteins indicates that each protein has a unique N-terminal peptide and therefore a unique initiation site for protein synthesis, with the possible exception of the 74,000 and 95,000 molecular weight proteins, which may have the same N-terminal sequence. Therefore, these proteins cannot be derived by proteolytic cleavage of a large precursor protein.The messenger activities for many of the hybrid virus proteins can be resolved by gel electrophoresis, demonstrating the presence of multiple SV40-specific mRNA species. This result is consistent with the possibility that each SV40-specific protein is coded by a distinct species of RNA.  相似文献   

16.
17.
18.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

19.
Four independent, spontaneous mutants of the adenovirus type 2-simian virus 40 hybrid Ad2+ND3 that allow efficient growth in monkey cells were isolated previously (C. W. Anderson, Virology 111:263-269, 1981). All four mutations have been mapped within the coding sequence for the adenovirus DNA-binding protein by marker rescue analysis. DNA sequence analysis of a region of ca. 1,000 base pairs shown by marker rescue to contain the host range mutations demonstrated that the host range mutant hr602 differs from its parent, Ad2+ND3, at only a single nucleotide. Mutant hr602 has a thymine in place of a cytosine at the first position of the 130th codon, as measured from the initiation site for the DNA-binding protein. This change results in the replacement of a histidine by a tyrosine in mutant hr602 DNA-binding protein. Each of the other three Ad2+ND3 host range mutants have exactly the same nucleotide alteration as does hr602. This same nucleotide change was recently reported for a similarly derived host range mutant of adenovirus 5.  相似文献   

20.
The distribution of simian virus 40 (SV40)-specific proteins in nuclear subfractions of pulse-chase-labeled HeLa cells infected with nondefective adenovirus type 2 (Ad2)-SV40 hybrid viruses was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The SV40-specific proteins of Ad2+ND1, Ad2+ND2, and Ad2+ND5 specifically associate with the nuclear matrix and are virtually absent from the high-salt nuclear extract. In Ad2+ND4-infected HeLa cells, the SV40-specific proteins with molecular weights of 64,000 (64K) and lower also specifically associate with the nuclear matrix. The SV40-specific 72K, 74K, and 95K proteins were found both in the nuclear matrix and in the high-salt nuclear extract. Analyses of the nuclear matrices isolated from hybrid virus-infected cells by immunofluorescence microscopy showed that SV40 U-antigen-positive sera from SV40 tumor-bearing hamsters react with SV40-specific proteins integrated into nuclear matrices of HeLa cells infected by Ad2+ND1, Ad2+ND2, and Ad2+ND4, but not with nuclear matrices of HeLa cells infected by Ad2+ND5. This suggests that SV40-specific proteins of Ad2+ND1, Ad2+ND2, and Ad2+ND4 integrated into the nuclear matrix carry SV40 U-antigen determinants. The apparent discrepancy in the subcellular localization of SV40-specific proteins in hybrid virus-infected cells when analyzed by biochemical cell fractionation procedures and when analyzed by immunofluorescence staining is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号