首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to assess the direct effect of progesterone on rabbit pulmonary arteries and to examine the mechanism of its action. Rings of pulmonary artery from male rabbits were suspended in organ baths containing Krebs solution, and isometric tension was measured. The response to progesterone was investigated in arterial rings contracted with noradrenaline (NA), KCl, and CaCl2. The effects of endothelium, nitric oxide (NO), prostaglandins, cyclic GMP (cGMP), and the adrenergic beta-receptor on progesterone-induced relaxation were also assessed. Progesterone inhibited the vasocontractivity to NA, KCl, and CaCl2, and relaxed rabbit pulmonary artery. The relaxing response of progesterone in pulmonary artery was significantly reduced by removal of endothelium, inhibitors of nitric oxide synthase and guanylate cyclase, but not by prostaglandin synthase inhibitor and blockage of the adrenergic beta-receptor. In Ca2+-free (0.1 mM EGTA) Krebs solution, progesterone inhibited NA-induced contraction that was intracellular Ca2+-dependent, but didn't affect the contraction of extracellular Ca2+-dependent component. Our results suggest that progesterone induces relaxation of isolated rabbit pulmonary arteries partially via NO and cGMP. Progesterone may also inhibit Ca2+ influx through potential-dependent calcium channels (PDCs) and Ca2+ release from intracellular stores.  相似文献   

2.
Urocortin, a peptide hormone related to the corticotropin releasing factor, is suggested to be involved in blood pressure regulation by dilating the peripheral blood vessels. In rat tail arteries, urocortin-induced vasodilation is due to a decrease in myofilament Ca2+ sensitivity the mechanism of which is still unclear. In this study, the hypothesis was tested that the decrease in Ca2+ sensitivity in mouse tail arteries results from the activation of myosin light chain phosphatase. The relaxation of KCl-precontracted (42 mM) intact mouse tail arteries by urocortin (1 nM and 10 nM) was significantly inhibited by 1 microM antisauvagine30, a CRF-2 receptor antagonist (p < 0.05, n = 3). The addition of 1 microM KT 5720, an inhibitor of PKA, to intact rat tail arteries did not affect the KCl-induced force but significantly attenuated the urocortin-induced relaxation (n = 5). In alpha-toxin permeabilized mouse tail arteries, urocortin relaxed submaximally activated preparations at constant pCa 6.1 by 37.6 +/- 8.2% (n = 5) as compared to control vessels (n = 5, p < 0.001). The relaxation in permeabilized vessels was inhibited by pre-treatment with 30 microM Rp-8-CPT-cAMPS, an inactive analogue of cAMP. In permeabilized mouse tail arteries, treatment with 100 nM urocortin was associated with dephosphorylation of MLC20(Ser19) and MYPT1(Thr696/Thr850). The effect of urocortin on MYPTI dephosphorylation was completely abolished by 30 M Rp-8-CPT-cAMPS and mimicked by the cAMP analogue Sp-5,6-DCI-cBiMPS. Based on these findings, we propose that the urocortin-induced relaxation is due to a decrease in calcium sensitivity mediated by a cAMP-dependent increase in the activity of MLCP.  相似文献   

3.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Urocortin is a peptide hormone related to corticotrophin-releasing factor. It is assumed that urocortin is involved in blood pressure regulation by dilating the peripheral blood vessels. In rat tail arteries, urocortin-induced vasodilation is caused by a decrease in the myofilament Ca2+ sensitivity, the mechanism of which is still unclear. In this study, the hypothesis was tested that the decrease in the Ca2+ sensitivity in mouse tail arteries results from the activation of myosin light chain phosphatase. The relaxation of KCl (42 mM) precontracted intact mouse tail arteries by 1 and 10 nM urocortin was significantly inhibited by 1 μM antisauvagine-30, a CRF-2 receptor antagonist (p < 0.05, n = 3). The addition of 1 μM KT 5720, a protein kinase A inhibitor, to intact rat tail arteries did not affect the KCl-induced force but significantly attenuated the urocortin-induced relaxation (n = 5). In α-toxin-permeabilized mouse tail arteries, urocortin relaxed activated preparations at constant pCa 6.1 by 37.6 ± 8.2% (n = 5) as compared with reference vessels (n = 5, p < 0.001). The relaxation of vessels with impaired membranes was inhibited by pretreatment with 30 μM Rp-8-COT-cAMPS, an inactive analog of cAMP. In permeabilized mouse arteries, treatment with 100 nM urocortin was related to dephosphorylation of MLC 20 Ser 19 and MYPT1Thr696/Thr850. The effect of urocortin on MYPT1 dephosphorylation was completely abolished by 30 μM Rp-8-CPT-cAMPS and mimicked by Sp-5,6-DCl-cBiMPS, an active cAMP analog. On the basis of these findings, it was assumed that the urocortin-induced relaxation is a consequence of a decrease in the calcium sensitivity mediated by a cAMP-dependent increase in the activity of myosin light chain phosphatase.  相似文献   

5.
Nitric oxide (NO) donors generally relax vascular preparations through cGMP-mediated mechanisms. Relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and coronary arteries to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) is almost eliminated by inhibition of soluble guanylate cyclase activation with 10 microM 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), whereas only a modest inhibition of relaxation is observed under hypoxia (PO2 = 8-10 Torr). This effect of hypoxia is independent of the contractile agent used and is also observed with NO gas. ODQ eliminated SNAP-induced increases in cGMP under hypoxia in BPA. cGMP-independent relaxation of BPA to SNAP was not attenuated by inhibition of K+ channels (10 mM tetraethylammonium), myosin light chain phosphatase (0.5 microM microcystin-LR), or adenylate cyclase (4 microM 2',5'-dideoxyadenosine). SNAP relaxed BPA contracted with serotonin under Ca2+-free conditions in the presence of hypoxia and ODQ, and contraction to Ca2+ readdition was also attenuated. The sarcoplasmic reticulum Ca2+-reuptake inhibitor cyclopiazonic acid (0.2 mM) attenuated SNAP-mediated relaxation of BPA in the presence of ODQ. Thus hypoxic conditions appear to promote a cGMP-independent relaxation of BPA to NO by enhancing sarcoplasmic reticulum Ca2+ reuptake.  相似文献   

6.
Cellular redox change regulates pulmonary vascular tone by affecting function of membrane and cytoplasmic proteins, enzymes, and second messengers. This study was designed to test the hypothesis that functional modulation of ion channels by thiol oxidation contributes to regulation of excitation-contraction coupling in isolated pulmonary artery (PA) rings. Acute treatment with the thiol oxidant diamide produced a dose-dependent relaxation in PA rings; the IC50 was 335 and 58 microM for 40 mM K+ - and 2 microM phenylephrine-induced PA contraction, respectively. The diamide-mediated pulmonary vasodilation was affected by neither functional removal of endothelium nor 8-bromoguanosine-3'-5'-cyclic monophosphate (50 microM) and HA-1004 (30 microM). A rise in extracellular K+ concentration (from 20 to 80 mM) attenuated the thiol oxidant-induced PA relaxation. Passive store depletion by cyclopiazonic acid (50 microM) and active store depletion by phenylephrine (in the absence of external Ca2+ both induced PA contraction due to capacitative Ca2+ entry. Thiol oxidation by diamide significantly attenuated capacitative Ca2+ entry-induced PA contraction due to active and passive store depletion. The PA rings isolated from left and right PA branches appeared to respond differently to store depletion. Although the active tension induced by passive store depletion was comparable, the active tension induced by active store depletion was 3.5-fold greater in right branches than in left branches. These data indicate that thiol oxidation causes pulmonary vasodilation by activating K+ channels and inhibiting store-operated Ca2+ channels, which subsequently attenuate Ca2+ influx and decrease cytosolic free Ca2+ concentration in pulmonary artery smooth muscle cells. The mechanisms involved in thiol oxidation-mediated pulmonary vasodilation or activation of K+ channels and inhibition of store-operated Ca2+ channels appear to be independent of functional endothelium and of the cGMP-dependent protein kinase pathway.  相似文献   

7.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

8.
Pulmonary arteries (PA) are resistant to the vasodilator effects of extracellular acidosis in systemic vessels; the mechanism underlying this difference between systemic and pulmonary circulations has not been elucidated. We hypothesized that RhoA/Rho-kinase-mediated Ca2+ sensitization pathway played a greater role in tension development in pulmonary than in systemic vascular smooth muscle and that this pathway was insensitive to acidosis. In arterial rings contracted with the alpha1-agonist phenylephrine (PE), the Rho-kinase inhibitor Y-27632 (< or =3 microM) induced greater relaxation in precontracted PA rings than in aortic rings. In PA rings stimulated by PE, the activation of RhoA was greater than in aorta. Normocapnic acidosis (NA) induced a smaller relaxation in precontracted PA than in aorta. However, in the presence of nifedipine and thapsigargin, when PE-induced contraction was predominantly mediated by Rho-kinase, the relaxant effect of NA was reduced and similar in both vessel types. Furthermore, in the presence of Y-27632, NA induced a greater relaxation in both PA and aorta, which was similar in both vessels. Finally, in alpha-toxin-permeabilized smooth muscle, PE-induced contraction at constant Ca2+ activity was inhibited by Y-27632 and unaffected by acidosis. These results indicate that Ca2+ sensitization induced by the RhoA/Rho-kinase pathway played a greater role in agonist-induced vascular smooth muscle contraction in PA than in aorta and that tension mediated by this pathway was insensitive to acidosis. The predominant role of the RhoA/Rho-kinase pathway in the pulmonary vasculature may account for the resistance of this circulation to the vasodilator effect of acidosis observed in the systemic circulation.  相似文献   

9.
Telegdy G  Adamik A 《Peptides》2008,29(11):1937-1942
The actions of individual corticotropin-releasing hormone (CRH) receptor (CRHR1 and CRHR2) were studied on the hyperthermia caused by urocortin 1, urocortin 2 and urocortin 3 in rats. Urocortin 1, urocortin 2 or urocortin 3 was injected into the lateral brain ventricle in conscious rats and the colon temperature was measured at different times following injection, up to 6h. In order to study the possible role of CRH receptors, the animals were treated with a urocortins together with the urocortin receptor inhibitors CRF 9-41, antalarmin and astressin 2B to influence the action of urocortins in initiating hyperthermia. Urocortin 1 at a dose of 2microg caused an increase in colon temperature, maximal action being observed in body temperature at 3h. CRH 9-41 and antalarmin, CRHR1 receptor antagonists, prevented the urocortin-induced increase in colon temperature while astressin 2B (CRHR2 receptor antagonist) was ineffective. Urocortin 2 at a dose of 2microg showed a byphasic action in increase in colon temperature having the first peak between 30 min and 1h and the second peak at 4h following treatment. CRF (9-41) and antalarmin was ineffective while astressin 2B fully blocked the action of urocortin 2. Urocortin 3 in a dose of lmicrog increased colon temperature; the maximal effect was observed at 2h. CRF (9-41) and antalarmin was ineffective while astressin 2B fully blocked the action of urocortin 3. The results demonstrated that urocortin 1, 2 or 3 when injected into the lateral brain ventricle caused increases in body temperature is mediated by urocortin receptors. The action of urocortin 1 is mediated by CRHR1 receptor, while in the action of urocortin 2 and urocortin 3 CRHR2 receptor is involved.  相似文献   

10.
The present study examines the influence of the endothelium (E), Ca2+ concentration, cyanide and monocrotaline (MCT) pretreatment on the responses of isolated rat hilar pulmonary arterial rings (PA) to hypoxia. In PA precontracted with phenylephrine, hypoxia induced an initial E-dependent relaxation phase followed by an E-independent transient contraction and a final relaxation. An increase in Ca2+ concentration from 1.5 to 2.5 mM produced an E-dependent reduction in tone generation under O2 and a significant enhancement of the hypoxia-elicited initial relaxation and the transient contractile responses. Addition of cyanide (0.1 mM) to precontracted PA produced a transient contraction similar to that caused by hypoxia. Preincubation with cyanide led to inhibition of tone generation and abolition of the contraction to hypoxia. However, the final relaxation response to hypoxia was not inhibited by cyanide. Thus, hypoxia produces an E-independent contraction via a mechanism that appears also to be activated by cyanide, and this response is not altered by MCT. The endothelium alters the response to hypoxia in a Ca(2+)-dependent manner.  相似文献   

11.
We measured inositol 1,4,5-trisphosphate (IP3) production, intracellular calcium concentration ([Ca2+]i) and force of contraction induced by a thromboxane A2 analogue U46619 in porcine coronary artery to elucidate the relaxant effect of a K+ channel opener cromakalim. Cromakalim (10 microM) significantly inhibited the production of IP3, Ca2+ release from intracellular stores and contraction induced by 300 nM U46619. The inhibitory effect of cromakalim on IP3 was blocked by a K+ channel blocker tetrabutylammonium (TBA, 3 mM) and counteracted by 20 mM KCl-induced depolarization. These results suggest that the hyperpolarization of the plasma membrane by cromakalim inhibits the activation of phospholipase via the stimulation of the thromboxane A2 receptor to result in vasodilation.  相似文献   

12.
This study aimed to investigate the vasoactivity of sulfur dioxide (SO2), a novel gas identified from vascular tissue, in rat thoracic aorta. The thoracic aorta was isolated, cut into rings, and mounted in organ-bath chambers. After equilibrium, the rings were gradually stretched to a resting tension. Isometric tension was recorded under the treatments with vasoconstrictors, SO2 derivatives, and various drugs as pharmacological interventions. In endothelium-intact aortic rings constricted by 1 microM phenylephrine (PE), SO2 derivatives (0.5-8 mM) caused a dose-dependent relaxation. Endothelium removal and a NOS inhibitor L-NAME reduced the relaxation to low doses of SO2 derivatives, but not that to relatively high doses (>or=2 mM). In endothelium-denuded rings, SO2 derivatives attenuated vasoconstriction induced by high K+ (60 mM) or CaCl2 (0.01-10 mM). The relaxation to SO2 derivatives in PE-constricted rings without endothelium was significantly inhibited by blockers of ATP-sensitive K+(KATP) and Ca2+-activated K+ (KCa) channels, but not by those of voltage-dependent K+ channels, Na+- K+-ATPase or Na+-Ca2+ exchanger. SO2 relaxed vessel tone via endothelium-dependent mechanisms associated with NOS activation, and via endothelium-independent mechanisms dependent on the inhibition of voltage-gated Ca2+ channels, and the opening of KATP and KCa channels.  相似文献   

13.
J. Neurochem. (2012) 122, 1129-1136. ABSTRACT: Urocortin 3 (also known as stresscopin) is an endogenous ligand for the corticotropin-releasing factor receptor 2 (CRF(2) ). Despite predominant G(s) coupling of CRF(2) , promiscuous coupling with other G proteins has been also associated with the activation of this receptor. As urocortin 3 has been involved in central cardiovascular regulation at hypothalamic and medullary sites, we examined its cellular effects on cardiac vagal neurons of nucleus ambiguus, a key area for the autonomic control of heart rate. Urocortin 3 (1?nM-1000?nM) induced a concentration-dependent increase in cytosolic Ca(2+) concentration that was blocked by the CRF(2) antagonist K41498. In the case of two consecutive treatments with urocortin 3, the second urocortin 3-induced Ca(2+) response was reduced, indicating receptor desensitization. The effect of urocortin 3 was abolished by pre-treatment with pertussis toxin and by inhibition of phospolipase C with U-73122. Urocortin 3 activated Ca(2+) influx via voltage-gated P/Q-type channels as well as Ca(2+) release from endoplasmic reticulum. Urocortin 3 promoted Ca(2+) release via inositol 1,4,5 trisphosphate receptors, but not ryanodine receptors. Our results indicate a novel Ca(2+) -mobilizing effect of urocortin 3 in vagal pre-ganglionic neurons of nucleus ambiguus, providing a cellular mechanism for a previously reported role for this peptide in parasympathetic cardiac regulation.  相似文献   

14.
Hydrogen peroxide (H(2)O(2)) is a proposed endothelium-derived hyperpolarizing factor and metabolic vasodilator of the coronary circulation, but its mechanisms of action on vascular smooth muscle remain unclear. Voltage-dependent K(+) (K(V)) channels sensitive to 4-aminopyridine (4-AP) contain redox-sensitive thiol groups and may mediate coronary vasodilation to H(2)O(2). This hypothesis was tested by studying the effect of H(2)O(2) on coronary blood flow, isometric tension of arteries, and arteriolar diameter in the presence of K(+) channel antagonists. Infusing H(2)O(2) into the left anterior descending artery of anesthetized dogs increased coronary blood flow in a dose-dependent manner. H(2)O(2) relaxed left circumflex rings contracted with 1 muM U46619, a thromboxane A(2) mimetic, and dilated coronary arterioles pressurized to 60 cmH(2)O. Denuding the endothelium of coronary arteries and arterioles did not affect the ability of H(2)O(2) to cause vasodilation, suggesting a direct smooth muscle mechanism. Arterial and arteriolar relaxation by H(2)O(2) was reversed by 1 mM dithiothreitol, a thiol reductant. H(2)O(2)-induced relaxation was abolished in rings contracted with 60 mM K(+) and by 10 mM tetraethylammonium, a nonselective inhibitor of K(+) channels, and 3 mM 4-AP. Dilation of arterioles by H(2)O(2) was antagonized by 0.3 mM 4-AP but not 100 nM iberiotoxin, an inhibitor of Ca(2+)-activated K(+) channels. H(2)O(2)-induced increases in coronary blood flow were abolished by 3 mM 4-AP. Our data indicate H(2)O(2) increases coronary blood flow by acting directly on vascular smooth muscle. Furthermore, we suggest 4-AP-sensitive K(+) channels, or regulating proteins, serve as redox-sensitive elements controlling coronary blood flow.  相似文献   

15.
Nonadrenergic noncholinergic (NANC) vasodilator mechanisms may contribute to the maintenance of adult pulmonary and systemic vascular tone. However, their actions in the neonatal circulation have not been studied. We aimed to investigate NANC vasorelaxation in neonatal and 2-week-old piglet pulmonary and mesenteric arteries and to examine the potential role of nitric oxide (NO) in this phenomenon. Responses to electric field stimulation (EFS, 50V, 0.25-32 Hz) were investigated in pulmonary and mesenteric artery rings (external diameter 150-200 microm) precontracted with the thromboxane A2 mimetic U46619, in the presence of guanethidine (10 microM) and atropine (10 microM). Under these conditions, EFS resulted in a frequency dependent relaxation of newborn pulmonary (maximal relaxation of 53+/-9.1%), mesenteric (68.8.2+/-7.1%) and 2-wk-old mesenteric (46 6.3%) arteries but this relaxation was significantly reduced (4.5+/-2.2%) in 2-week-old pulmonary arteries. In neonatal pulmonary arteries, the neurotoxin tetrodotoxin (0.3 muM), the NO synthase inhibitor L-NAME (0.1 mM), and the guanylyl cyclase inhibitor ODQ (10 microM) abolished EFS-induced relaxations, suggesting that NANC relaxation of porcine neonatal pulmonary arteries is mediated by NO, which is probably neuronal in origin. However, The expression in pulmonary arteries of the neuronal NO synthase (nNOS), as determined by Western-blot analysis, increased with postnatal age whereas the expression of the endothelial NOS (eNOS) did not change. In conclusion, NANC relaxation is present in neonatal pulmonary and mesenteric arteries and it is, at least partially, mediated through NO. NANC relaxation of porcine pulmonary and mesenteric arteries decreases with postnatal maturation.  相似文献   

16.
The alpha adrenoceptors on endothelial cells   总被引:4,自引:0,他引:4  
Endothelial cells release a powerful factor (endothelium-derived relaxing factor [EDRF]) that relaxes smooth muscle cells in response to some vasodilating agents such as acetylcholine. Contraction curves to norepinephrine (NE) in greyhound, mongrel dog, and pig coronary artery rings were studied in vitro in the presence of propranolol. Removal of endothelium increased the sensitivity and maximum contraction in response to NE. In other experiments pig coronary rings were precontracted with a thromboxane mimetic U 46619 in the presence of propranolol. NE relaxed these arteries only if endothelium was present. Methoxamine was without effect but the relaxation response to NE was antagonized by phentolamine, idazoxan, and yohimbine, which suggests that there are alpha 2 adrenoceptors on endothelial cells that mediate the release of EDRF. Greyhound and mongrel dog large coronary arteries relaxed to NE only if prazosin was present, which suggests that alpha 1-adrenoceptor stimulation on the vascular smooth muscle can override the relaxation response to EDRF. Comparison of NE responses in carotid, mesenteric, renal, and femoral large arteries of the pig, greyhound, and mongrel dog indicate the nonuniformity of distribution of alpha 2 adrenoceptors on endothelium and alpha 1 and alpha 2 adrenoceptors on vascular smooth muscle. The integrity of the endothelium must now be considered in interpreting the vascular responses to alpha-adrenoceptor agonists.  相似文献   

17.
Norbormide is a vasoconstrictor of rat peripheral arteries and a relaxant in rat aorta. To characterise norbormide actions within the rat vascular tree we have investigated its effects on the contractile function of rings from several arteries and veins. A maximal norbormide concentration (50 microM) failed to contract thoracic aorta and carotid artery, whereas in pulmonary artery, abdominal aorta, iliac, caudal, and femoral arteries it induced a contractile effect that was respectively 4.8 +/- 0.6, 18.4 +/- 1.5, 39 +/- 5, 144 +/- 7, and 260 +/- 22% of that induced by 90 mM KCl. In pulmonary, carotid, and iliac arteries, and in thoracic and abdominal aorta, 50 microM norbormide inhibited KCl-induced responses. Norbormide (50 microM) contracted all veins investigated. The effect, expressed as % of KCl-induced contraction, was 121 +/- 25, 154 +/- 14.5, 154 +/- 18.2, 203 +/- 19, and 267 +/- 33 for pulmonary vein, thoracic and abdominal vena cava, iliac and jugular veins, respectively. In jugular vein, as previously shown in rat caudal artery, norbormide contraction was abolished in Ca2+-free medium, was unaffected by the Ca2+ channel blocker nifedipine, and was relaxed by SK&F 96365, a blocker of store-operated Ca2+ channels. In conclusion: i) rat veins represent the main target for contractile norbormide action; ii) in both artery and veins norbormide contractions are generally inversely related to the calibre of the vessel; iii) norbormide-induced contraction is mediated by the same mechanism/s in arteries and veins; iiii) in norbormide-contracted arteries the drug activates both contractile and relaxing mechanisms.  相似文献   

18.
Cajaninstilbene acid (CSA) is a major active component present in the leaves of Cajanus cajan (L.) Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1–10 µM) produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F (U46619), and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with NG-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl2 (0.01–5 mM) in Ca2+-free 60 mM KCl solution and by 30 nM (−)-Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist) in Ca2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC) at Ser19 and myosin phosphatase target subunit 1 (MYPT1) at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ) at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.  相似文献   

19.
Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings. Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+. Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes.  相似文献   

20.
The mechanism of the Ba2+-induced contraction was investigated using intact and saponin-treated skinned smooth muscle (skinned muscle) strips of the rabbit mesenteric artery. After depletion of Ca2+ stored in the caffeine-sensitive site, greater than 0.65 mM Ba2+ evoked contraction in muscle strips depolarized with 128 mM K+ in Ca2+-free solution in a dose-dependent fashion, and the ED50 values for Ca2+ and Ba2+ were 0.5 mM and 1.2 mM in intact muscle strips, respectively. Nisoldipine (10 nM) blocked the contraction evoked by high K+ or 10 microM norepinephrine (NE) in the presence of 2.6 mM Ba2+, but did not block the contraction evoked in the presence of 2.6 mM Ca2+. These results may indicate that Ba2+ permeates the voltage-dependent Ca2+ channel. In skinned muscle strips, the ED50 values for Ca2+ and Ba2+ were 0.34 and 90 microM, respectively, as estimated from the pCa- and pBa-tension relationships. Calmodulin enhanced and trifluoperazine inhibited the Ba2+- and Ca2+-induced contractions. After the application of Ba2+ or Ca2+ with ATP gamma S in rigor solution, myosin light chain (MLC) was irreversibly thiophosphorylated, as estimated from the Ba2+- or Ca2+-independent contraction. Furthermore, both divalent cations phosphorylated MLC, as measured using two-dimensional gel electrophoresis, to the extent expected from the amplitudes of the contraction evoked by these cations. Thus, Ba2+ is capable of activating the contractile proteins as Ca2+ does. The amount of Ca2+ or Ba2+ stored in cells was estimated from the caffeine response evoked in Ca2+-free solution in intact and skinned muscle strips. After the application of 0.3 microM Ca2+ or 0.1 mM Ba2+ for 60 s to skinned muscle strips after the depletion of Ca2+ stored in cells, caffeine produced a contraction only upon pretreatment with Ca2+ but not with Ba2+. When Ba2+ was applied successively just after the application of Ca2+, the subsequently evoked caffeine-induced contraction was much smaller than that evoked by pretreatment with Ca2+ alone. The above results indicate that Ba2+ permeates the voltage-dependent Ca2+ channel but may not permeate the receptor-operated Ca2+ channel, it releases Ca2+ from store sites but is not accumulated into the store site, and it directly activates the contractile proteins via formation of a Ba2+-calmodulin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号