首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Auxin (indole-3-acetic acid) regulates caulonema differentiation as a result of gradual transitional events in the chloronema tip cells in moss protonema. This auxin action in the moss Funaria hygrometrica involves a rapid influx of calcium ions from the extracellular medium. This investigation demonstrates spatial and temporal changes in calmodulin (CaM) activation (formation of Ca(2+)-CaM complex) in the chloronema tip cells subjected to auxin treatment. Photomicroscopic localisation of the fluorescence (excitation at 365 nm and emission of 397 nm) from the tricomplex of Ca(2+)-CaM with trifluoperazine (TFP, a blocker of Ca(2+)-CaM action) shows a tip to base (tip high) gradient of Ca(2+)-CaM in the chloronema tip cells. Comparison of Ca(2+)-CaM-TFP fluorescence over time in the chloronema tip cells of wild type Funaria with the response in an auxin overproducer mutant (86.1) and an auxin deficient mutant (87.13) reveals the involvement of auxin in calmodulin activation as a rapid response prior to cell differentiation.  相似文献   

3.
We have investigated the presence of auxin and the ability of chloronema cells to synthesize indole-3-acetic acid (IAA) in axenic protonema cell cultures of the moss Funaria hygrometrica. The endogenous level of auxin activity was 4 and 7μg-IAA equivalents/kg in caulonema and chloronema cell types, respectively. Based on an indole-α-pyrone fluorometric assay, the level of putative IAA was observed to be 5.0 and 1.9.μg/kg in caulonema and chloronema cells, respectively. [3H]Tryptophan was metabolized into IAA via the indole-pyruvate pathway by intact chloronema cells and also by the cell free homogenates. More [3H]IAA accumulated when homogenates from cells pre-grown at low cell densities (< 0.5 mg/ml) as compared to those at high cell densities ( > 0.5 mg/ml) were used. Since the activities of peroxidase and IAA-oxidase are known to be high at high cell densities, the lack of accumulation of radioactivity in IAA at high densities can be attributed to a high level of IAA-oxidizing enzymes. Our results suggest a possible relationship between IAA accumulation and caulonema differentiation.  相似文献   

4.
Although the developmental programs of plants and animals differ, key regulatory components of their cell cycle have been conserved. Particular attention has been paid to the role of the complexes between highly conserved cyclin and cyclin-dependent kinases in regulating progression through the cell cycle. The recent demonstration that roscovitine is a potent and selective inhibitor of the animal cyclin-dependent kinases cdc2 (CDK1), CDK2 and CDK5 prompted an investigation into its effects on progression through the plant cell cycle. Roscovitine induced arrests both in late G1 and late G2 phase in BY-2 tobacco cell suspensions. Both blocks were fully reversible when roscovitine was used at concentrations similar to those used in the animal system. Stationary-phase cells subcultured in the presence of roscovitine were arrested at a 2C DNA content. This arrest was more efficient without exogenous addition of plant growth regulator. Roscovitine induced a block in G1 earlier than that induced by aphidicolin. S-phase synchronized cells treated with roscovitine were arrested at a 4C DNA content at the G2/ M transition. The expression analysis of a mitotic cyclin (NTCYC1) indicated that the roscovitine-induced G2 block probably occurs in late G2. Finally, cells in metaphase were insensitive to roscovitine. The purified CDK/cyclin kinase activities of late G1 and early M arrested cells were inhibited in vitro by roscovitine. The implications of these experimental observations for the requirement for CDK activity during progression through the plant cell cycle are discussed.  相似文献   

5.
As in higher plants, the development of the moss Physcomitrella patens is regulated by environmental signals and phytohormones. At the protonema level transition from chloronema to caulonema cells is under auxin control. The formation on second sub-apical caulonema cells of buds that will give rise to the leafy gametophore requires cytokinins. Using [3H]azidoCPPU (1-(2-azido-6-chloropyrid-4-yl)-3-(4-[3H])phenylurea), a photoactivatable cytokinin agonist, we have specifically photolabelled a soluble 34 kDa protein of P. patens. Urea derivatives were very efficient competitors of photolabelling while purine-type cytokinins were poor competitors. The protein UBP34 was purified by affinity chromatography and the sequences of six internal peptides obtained. A cDNA encoding UBP34 was cloned by screening a P. patens protonema cDNA library with a probe amplified by PCR using degenerate primers designed from the peptide sequences. The UBP34 amino acid sequence shows an average sequence identity of 42% with both intracellular PR proteins and the BetV1-related family of plant allergens. Recombinant UBP34 expressed in Escherichia coli was confirmed to bind azidoCPPU.  相似文献   

6.
Fucci (fluorescent ubiquitination-based cell cycle indicator) is able to visualize dynamics of cell cycle progression in live cells; G1- and S-/G2-/M-phase cells expressing Fucci emit red and green fluorescence, respectively. This system could be applied to cell kinetic analysis of tumour cells in the field of cancer therapy; however, it is still unclear how fluorescence kinetics change after various treatments, including exposure to anticancer agents. To explore this, we arrested live HeLa cells expressing the Fucci probes at various cell cycle stages and observed the fluorescence, in conjunction with flow cytometric analysis. X-irradiation, HU (hydroxyurea) and nocodazole arrest cells at G2/M boundary, early S-phase and early M-phase, respectively. Although X-irradiation and HU treatment induced similar accumulation kinetics of green fluorescent cells, nocodazole treatment induced an abnormal red fluorescence at M phase, followed by accumulation of both red and green fluorescent cells with 4N DNA content. We conclude that certain agents that disrupt normal cell cycle regulation could cause unexpected fluorescence kinetics in the Fucci system.  相似文献   

7.
8.
The spore germination,protonemal development,and gametophyte differentiation of Hypnum pacleseens were observed in cultivation.Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore.Its protonema is massive with filamentous chloronema formed inside.The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema.The initial cell of gametophyte differentiated from chloronema and caulonema.Sporeling type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.  相似文献   

9.
S H Hahm  M J Saunders 《Cell calcium》1991,12(10):675-681
Changes in intracellular [Ca2+] ([Ca2+]i) after cytokinin-treatment in protonema cells of the moss Funaria hygrometrica have been measured using the pentapotassium salt of Indo-1. The extent of dye loading strongly depended on lowering the pH of the incubation medium to 5.0. Exposing dye-loaded cells briefly with Mn2+ did not quench fluorescence suggesting that the source of fluorescence is from the cytoplasm and not from the cell wall. Indo-1 remains responsive to changes in [Ca2+]i in Funaria cells. The [Ca2+]i in quiescent cells (with and without extracellular Ca2+) is 250 nM, which is within the range of reported [Ca2+]i of other plant cells. Treatment of cells with extracellular cytokinin in 4 mM Ca2+ induced a three-fold increase in [Ca2+]i to 750 nM in target caulonema cells. This increase was not observed in Ca(2+)-free medium. These target cells respond to cytokinin treatment by an asymmetrical division, while non-target chloronema cells do not divide. Cytokinin appears to increase [Ca2+]i by extracellular Ca2+ uptake. However, non-target chloronema cells and tip cells also respond to cytokinin treatment by increasing [Ca2+]i. The differential physiological response of these cell types to hormonal stimulation must lie further down the signal transduction chain.  相似文献   

10.
The effects of cell cycle on recombinant protein production and infection yield in the baculovirus-insect cell expression system (BES) were investigated. When, at any cell cycle phase, the host cell was infected by baculovirus, the cell cycle was finally arrested at the S or G(2)/M phase with 4n DNA. In the case of G(1) or S phase-infection, cell cycle of virus-infected cells began to be arrested at S phase from 8 h post-infection or at G(2)/M phase from 4 h post-infection, respectively; while, in the case of M phase-infection, cell cycle was arrested at S phase after 12 h post-infection. When the host cell was infected at the G(1) phase, average intracellular GFPuv fluorescence intensity was 1.3-fold higher than that at G(2)/M phase at 24 h post-infection. The GFPuv expression corresponded to the profile of the G(1) cell cycle in the BES. Infection yield was measured by detection of intracellular DNA binding protein using immunohistochemical method within 7 h post-infection. The infection yield at G(1) or S phase-infection was 1.5-1.8-fold higher than that at G(2)/M phase-infection.  相似文献   

11.
Staurosporine has been reported to cause arrest of cells in G1 phase at low concentration and in G2 phase at high concentration. This raises the question of why the effects of staurosporine on the cell cycle depend on the applied concentration. In order to verify these multiple functions of staurosporine in Meth-A cells, we used cyclin E as a landmark of G1/S transition, cyclin B as a landmark of G2/M transition and MPM2 as a hallmark of M phase. We found that staurosporine arrested cells in G1 phase at a low concentration (20 nM) and in G2/M phase at a high concentration (200 nM). However, 200 nM staurosporine increased the expression of cyclin B and cdc2 proteins, suggesting that the cells progressed through the G2/M transition, and increased the expression of MPM2 protein, indicating that the cells entered M phase. Moreover, 200 nM staurosporine increased the expression of p53 and p21 proteins and inhibited the expression of cyclin E and cdk2 proteins, suggesting that the cells were arrested in the G1 phase of the next cycle. Morphological observation showed similar results as well. These data suggest that the G2/M accumulation induced by 200 nM staurosporine does not reflect G2 arrest, but rather results from M phase arrest, followed by progression from M phase to the G1 phase of the next cycle without cytokinesis, and finally arrest of the cells in G1 phase.  相似文献   

12.
The spore germination, protonemal development, and gametophyte differentiation of Hypnum pacleseens were observed in cultivation. Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore. Its protonema is massive with filamentous chloronema formed inside. The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema. The initial cell of gametophyte differentiated from chloronema and caulonema. Sporeling-type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.  相似文献   

13.
14.
Early development of the moss Physcomitrella patens follows a simple course leading to the formation of a filamentous protonema containing only two cell-types, chloronema and caulonema. The addition of the hormone cytokinin leads to the induction of multicellular buds from such protonema. The spectrum of extracellular proteins (ECPs) synthesized by P. patens has been investigated at defined stages of development and under defined hormone treatments. It is found that in contrast to the limited changes in intracellular protein synthesis detectable, in the extracellular environment major and specific changes in the patterns of proteins synthesized occur. For example, the presence of caulonema cells is characterized by the synthesis of a 25 kDa ECP whereas early chloronema differentiation is distinguished by the presence of a 38 kDa ECP. The analysis of the pattern of ECPs synthesized by developmental mutants altered in bud formation, and in response to cytokinin in tunicamycin treated protonema (in which bud induction is blocked) indicate that the synthesis of a 14 kDa ECP is specifically induced by cytokinin. This protein represents a novel cytokinin-induced ECP. These data show that the differentiation of particular cell types in plants is associated with the synthesis of particular ECPs, and suggest that hormones which induce specific morphogenic events may do so via the synthesis of specific ECPs.  相似文献   

15.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:6,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

16.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

17.
目的通过观察大豆低聚糖对胃癌癌细胞株BGC-823细胞的细胞周期和细胞凋亡的影响,探索乳酸杆菌发酵滤液对胃癌细胞作用的可能机制。方法用光镜和流式细胞仪分析不同浓度大豆低聚糖对BGC-823细胞的凋亡诱导效果;用流式细胞仪分析不同浓度大豆低聚糖对BGC-823细胞细胞周期的影响。结果大豆低聚糖可以诱导BGC-823细胞的凋亡。形态学观察处理后的BGC-823细胞,可见细胞变形,细胞皱缩,体积变小,细胞间隙增大,细胞核固缩。流式细胞仪分析50 mg/ml和100 mg/ml大豆低聚糖作用48 h和72 h BGC-823细胞的凋亡比例,分别为6.76%和7.93%。50 mg/ml大豆低聚糖作用48 h,引起BGC-823细胞G1期阻滞,100 mg/ml大豆低聚糖作用48 h,引起BGC-823细胞出现S期阻滞。结论大豆低聚糖可诱导部分BGC-823细胞凋亡。大豆低聚糖对BGC-823细胞的生长抑制作用在低浓度时可能通过G1期阻滞实现,在高浓度时可能通过S期阻滞实现。  相似文献   

18.
The emergence of resistance to cisplatin is a serious drawback of cancer therapy. To help elucidate the molecular basis of this resistance, we examined matched ovarian cancer cell lines that differ in their DNA mismatch repair (MMR) status and the response to cisplatin. Checkpoint activation by cisplatin was identical in both lines. However, sensitive cells delayed S-phase transition, arrested at G2/M and died by apoptosis. The G2/M block was characterized by selective disappearance of homologous recombination (HR) proteins, which likely resulted in incomplete repair of the cisplatin adducts. In contrast, resistant cells transiently arrested at G2/M, maintained constant levels of HR proteins and ultimately resumed cell cycle progression. The net contribution of MMR to the cisplatin response was examined using matched semi-isogenic (HCT116±chr3) or strictly isogenic (293T-Lα-/+) cell lines. Delayed transition through S-phase in response to cisplatin was also observed in the MMR-proficient HCT116+chr3 cells. Unlike in the ovarian cell lines, however, both HCT116+chr3 and HCT116 permanently arrested at G2/M with an intact complement of HR proteins and died by apoptosis. A similar G2/M arrest was observed in the strictly isogenic 293T-Lα-/+ cells. This confirmed that although MMR undoubtedly contributes towards the cytotoxicity of cisplatin, it is only one of several pathways that modulate the cellular response to this drug. However, our data highlighted the importance of HR to cisplatin cytotoxicity and suggested that HR status might represent a novel prognostic marker and possibly also a therapeutic target, the inhibition of which would substantially sensitize cells to cisplatin chemotherapy.  相似文献   

19.
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression.  相似文献   

20.
We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号