首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The guild of stem-infesting insect pests of sunflower, Helianthus annuus L., within the central Plains is a concern to producers chiefly due to losses caused by plant lodging from the sunflower stem weevil, Cylindrocopturus adspersus (LeConte) (Coleoptera: Curculionidae), and Dectes texanus texanus LeConte (Coleoptera: Cerambycidae). The incidence of a root boring moth, Pelochrista womonana (Kearfott) (Lepidoptera: Tortricidae), also has increased. Experiments were conducted in three locations in Colorado and Kansas during 2001-2003 to investigate the potential of combining planting date and foliar and seed treatment insecticide applications to lower insect stalk densities of these three pests. The impact of these strategies on weevil larval parasitoids also was studied. Eight sunflower stem weevil larval parasitoid species were identified. All were Hymenoptera and included the following (relative composition in parentheses): Nealiolus curculionis (Fitch) (42.6%), Nealiolus collaris (Brues) (3.2%) (Braconidae), Quadrastichus ainsliei Gahan (4.2%) (Eulophidae), Eurytoma tylodermatis Ashmead (13.1%) (Eurytomidae), Neocatolaccus tylodermae (Ashmead) (33.7%), Chlorocytus sp. (1.6%), Pteromalus sp. (0.5%) (Pteromalidae), and Eupelmus sp. (1.0%) (Eupelmidae). The results from this 3-yr study revealed that chemical control was often reliable in protecting the sunflower crop from stem pests and was relatively insensitive to application timing. Although results in some cases were mixed, overall, delayed planting can be a reliable and effective management tool for growers in the central Plains to use in reducing stem-infesting pest densities in sunflower stalks. Chemical control and planting date were compatible with natural mortality contributed by C. adspersus larval parasitoids.  相似文献   

2.
The sunflower beetle, Zygogramma exclamationis (F.), is the major defoliating pest of sunflower (Helianthus annuus L.). Planting date was evaluated as a potential management tool in a variety of production regions throughout North Dakota from 1997 to 1999, for its impact on sunflower beetle population density of both adults and larvae, defoliation caused by both feeding stages, seed yield, oil content, and larval parasitism in cultivated sunflower. Results from this 3-yr study revealed that sunflower beetle adult and larval populations decreased as planting date was delayed. Delayed planting also reduced defoliation from adult and larval feeding, which is consistent with the lower numbers of the beetles present in the later seeded plots. Even a planting delay of only 1 wk was sufficient to significantly reduce feeding damage to the sunflower plant. Yield reduction caused by leaf destruction of the sunflower beetle adults and larvae was clearly evident in the first year of the study. The other component of sunflower yield, oil content, did not appear to be influenced by beetle feeding. The tachinid parasitoid, Myiopharus macellus (Rheinhard), appeared to be a significant mortality factor of sunflower beetle larvae at most locations regardless of the dates of planting, and was able to attack and parasitize the beetle at various larval densities. The results of this investigation showed the potential of delayed planting date as an effective integrated pest management tactic to reduce sunflower beetle adults, larvae, and their resulting defoliation. In addition, altering planting dates was compatible with biological control of the beetle, because delaying the planting date did not reduce the effectiveness of the parasitic fly, M. macellus, which attacks the sunflower beetle larvae.  相似文献   

3.
Patterns of nucleotide diversity in wild and cultivated sunflower   总被引:11,自引:0,他引:11       下载免费PDF全文
Liu A  Burke JM 《Genetics》2006,173(1):321-330
  相似文献   

4.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

5.
Neotephritisfinalis (Loew) (Diptera: Tephritidae), and sunflower bud moth, Suleima helianthana (Riley) (Lepidoptera: Tortricidae) are major head-infesting insect pests of cultivated sunflower (Helianthus annuus L.). Planting date was evaluated as a cultural pest management strategy for control of N. finalis and S. helianthana in several production regions of North Dakota during 2009 and 2010. Results of the nine site-year study revealed that late planting date (early to mid-June) reduced damage ratings and percentage of damaged heads for N. finalis compared with early planting dates (mid- to late May). Visual observations of adult N. finalis found that the majority of flies were found in the early planted sunflower (78.2%) compared with the late planted sunflower (21.8%). Late planting date also reduced the percentage of S. helianthana damaged heads compared with early planting dates. Yield losses were reduced with late planting date when populations of N. finalis and S. helianthana were high enough to cause damage. Results of this study showed that delayed planting is an effective integrated pest management strategy that can reduce head damage caused by N. finalis and S. helianthana and mitigate yield losses.  相似文献   

6.
Burke JM  Knapp SJ  Rieseberg LH 《Genetics》2005,171(4):1933-1940
We mapped quantitative trait loci (QTL) controlling differences in seed oil content and composition between cultivated and wild sunflower and used the results, along with those of a previous study of domestication-related QTL, to guide a genome-wide analysis of genetic variation for evidence of past selection. The effects of the seed oil QTL were almost exclusively in the expected direction with respect to the parental phenotypes. A major, oil-related QTL cluster mapped near a cluster of domestication-related QTL on linkage group six (LG06), the majority of which have previously been shown to have effects that are inconsistent with the parental phenotypes. To test the hypothesis that this region was the target of a past selective sweep, perhaps resulting in the fixation of the antagonistic domestication-related QTL, we analyzed simple sequence repeat (SSR) diversity from 102 markers dispersed throughout the sunflower genome. Our results indicate that LG06 was most likely the target of multiple selective sweeps during the postdomestication era. Strong directional selection in concert with genetic hitchhiking therefore offers a possible explanation for the occurrence of numerous domestication-related QTL with apparently maladaptive phenotypic effects.  相似文献   

7.
不同耕种稻田害虫及天敌的种群动态   总被引:7,自引:3,他引:7  
黄德  曾玲  梁广文  陈忠南 《应用生态学报》2005,16(11):2122-2125
通过田间调查,分析比较了有机耕种稻田和常规耕种稻田害虫和天敌的发生动态.结果表明,在有机稻田主要害虫的发生动态较对照缓和,次要害虫发生种类有所差异,而蜘蛛、捕食性昆虫和寄生蜂等稻田主要天敌数量上明显高于对照,表明停用化学合成物质后天敌的控害作用得到了恢复和明显的加强.  相似文献   

8.
The preference–performance hypothesis for insect herbivores predicts that adult females should preferentially choose hosts on which their offspring perform better. We tested this hypothesis for the sunflower moth, Homoeosoma electellum (Hulst) (Lepidoptera: Pyralidae), using 16 sunflower (pre‐breeding) lines, derived from a number of wild species of Helianthus, including Helianthus annuus L., Helianthus deserticola Heiser, Helianthus paradoxus Heiser, Helianthus praecox Engelm. & Gray ssp. hirtus (Heiser) Heiser, Helianthus praecox Engelm. & Gray ssp. runyonii (Heiser) Heiser, Helianthus petiolaris Nutt., Helianthus resinosus Small, and Helianthus tuberosus L. (Asteraceae), that are suitable for introducing wild sunflower germplasm into commercial cultivars. Female moths showed a range of ovipositional preference measures to the various lines. Combined data for three Helianthus species represented by multiple lines showed significant differences in female preference with respect to the parental species. Larval performance, determined by proportion of infested neonate larvae reaching the pupal stage, or mean pupal weight, varied across the lines and, as for the female preference data, also showed significant differences among the three parental Helianthus species represented by multiple lines. These data suggest that the characteristics in the pre‐breeding lines influencing female sunflower moth preference and larval performance likely originate from the parental species and may be consistently transferred to the derived pre‐breeding lines. Of particular note with regard to potential plant resistance mechanisms, lines derived from H. tuberosus showed consistent low preference–performance measures. Female preference and larval performance (for both measures) were strongly correlated, indicating that females preferred plants and lines on which larvae performed better, in support of the preference–performance hypothesis.  相似文献   

9.
The identification of genes underlying the phenotypic transitions that took place during crop evolution, as well as the genomic extent of resultant selective sweeps, is of great interest to both evolutionary biologists and applied plant scientists. In this study, we report the results of a molecular evolutionary analysis of 11 genes that underlie fatty acid biosynthesis and metabolism in wild and cultivated sunflower (Helianthus annuus). Seven of these 11 genes showed evidence of selection at the nucleotide level, with 1 (FAD7) having experienced selection prior to domestication, 2 (FAD2-3 and FAD3) having experienced selection during domestication, and 4 (FAB1, FAD2-1, FAD6, and FATB) having experienced selection during the subsequent period of improvement. Sequencing of a subset of these genes from an extended panel of sunflower cultivars revealed little additional variation, and an analysis of the genomic region surrounding one of these genes (FAD2-1) revealed the occurrence of an extensive selective sweep affecting a region spanning at least ca. 100 kb. Given that previous population genetic analyses have revealed a relatively rapid decay of linkage disequilibrium in sunflower, this finding indicates the occurrence of strong selection and a rapid sweep.  相似文献   

10.
The population density of herbivores depends on the spatial scale as well as the temporal scale. In a small-scale, short-term experiment, the number of individuals entering from the surrounding area will be most influential in determining the herbivore density. In large-scale, long-term experiments, however, the density of herbivores will rather be influenced by the survival rate of individuals inside the field because most of the herbivorous population derives from the parents that developed inside the field. If we want to predict the large-scale long-term density of herbivores, therefore, emphasis should be placed on the estimation of survival rate. To elucidate the effects of plant density on the large-scale long-term abundance of cabbage pests, we examined the survival rates of three lepidopterous pests, the small white butterfly Pieris rapae crucivora Boisduval (Pieridae), the beet semi-looper Autographa nigrisigna (Walker) (Noctuidae), and the diamondback moth Plutella xylostella (Linnaeus) (Yponomeutidae) under two levels of plant spacing (sparse plot, 2 m × 2 m interval; dense plot, 0.5 m × 0.5 m interval). The experiment with four blocks was repeated in two seasons. The number of eggs per plant was larger in the sparse plots than in the dense plots for all species. The survival rate of eggs and larvae, on the contrary, was lower in the sparse plots than in the dense plots. The lower survival rate of eggs in the sparse plots was mainly caused by the density dependency, while the lower survival rate of larvae in the sparse plots was mainly caused by the direct effects of plant density. It was thus suggested that the density of herbivores may become lower in the sparsely planted field in the long run because of the higher mortality of larvae. Received: September 16, 1998 / Accepted: March 22, 1999  相似文献   

11.
Amplified fragment length polymorphisms (AFLPs) represent one of the most powerful polymerase chain reaction (PCR)-based markers which enables one to discriminate single plants by DNA analysis. To date this technique has only been applied in cultivated sunflower to detect genetic diversity among oilseed inbred lines. In this article we report the use of AFLP markers to investigate the level of diversity within and between populations of Helianthus argophyllus collected in the Maputo area, Mozambique, both for taxonomic and breeding purposes. Three primer combinations gave the best results with 92 polymorphic fragments and were able to discriminate these wild endemic populations from H. annuus and from one of its interspecific hybrids. Most of the variation (71%) observed was within population, and the dendrogram based on shared fragments did not divide the H. argophyllus genotypes into distinct groups resembling different populations. Moreover the hybrid genotypes formed distinguishable subgroups with the cultivated sunflower genotype, confirming the suitability of this technique for taxonomic and phylogenetic studies. From a breeding point of view, although the 12 populations of H. argophyllus represent a new valuable genetic resource, only two of them possessed most of the variation observed, suggesting that they can be the most promising material for crossing with cultivated sunflower.  相似文献   

12.
Simple sequence repeat (SSR) and other DNA sequence-tagged site markers can be genotyped more rapidly and cost efficiently by simultaneously amplifying multiple loci (multiplex PCR). The development of PCR-multiplexes for a nearly genome-wide framework of 78 SSR marker loci in cultivated sunflower ( Helianthus annuus L.) is described herein. The most outstanding single-locus SSR markers in the public collection (300 out of 1,089) were identified and screened for polymorphisms among 24 elite inbred lines, preparatory to selecting SSR markers for testing in multiplex PCRs. The selected SSR markers produced robust PCR products, amplified a single locus each, were polymorphic among elite inbred lines (minimum, mean and maximum heterozygosities were 0.08, 0.53 and 0.85, respectively), and supply a dense genome-wide framework of predominantly or completely codominant, single-locus DNA markers for molecular breeding and genomics research in sunflower. Thirteen six-locus multiplex PCRs were developed for 78 SSR marker loci strategically positioned throughout the sunflower genome (three to five per linkage group) by identifying compatible SSR primer combinations and optimizing multiplex PCR protocols. The multiplexed SSR markers, when coupled with 17 complementary SSR marker loci, create a 'standard genotyping' set ideal for first-pass scans of the genome, as are often needed when screening bulked-segregant DNA samples or mapping phenotypic trait loci. The minimum, mean and maximum heterozygosities of the multiplexed SSR markers were 0.38, 0.62 and 0.83, respectively. The PCR-multiplexes increase genotyping throughput, reduce reagent costs, and are ideal for repetitive genotyping applications where common sets of SSR marker loci are required or advantageous.  相似文献   

13.
  • 1 In reservoirs of the south-eastern United States, Daphnia typically decline in abundance during the summer months. Current understanding suggests that adult shad (Dorosoma spp.), the dominant planktivore in these reservoirs, plays a limited role in Daphnia midsummer declines. The impact of shad larvae is beginning to be documented.
  • 2 To examine the impact of larval shad on Daphnia seasonal dynamics, larval dynamics were studied over two seasons and stomach contents were analysed during one season.
  • 3 Initial Daphnia panwla declines correlated with abundance of shad larvae. During the decline, shad stomach contents consisted of 97—100%D. parvula. After D. parvula declined, Bosmina and Diaphanosoma accounted for up to 97% of larval diets. When shad diets included other cladocerans, D. parvula abundance increased in the reservoir.
  • 4 When this predation pattern was incorporated into a predictive model, larval shad predation accounted for an initial, temporary decline in D. parvula abundance. However, when other crustaceans were incorporated into the shad diet, D. parvula populations increased.
  • 5 These results suggest that larval shad have a temporary, strong influence on the structure and abundance of D. parvula populations in south-eastern reservoirs of the United States.
  相似文献   

14.
The effects of three selected agrochemicals on bacterial diversity in cultivated soil have been studied. The selected agrochemicals are Cerox (an insecticide), Ceresate and Paraquat (both herbicides). The effect on bacterial population was studied by looking at the total heterotrophic bacteria presence and the effect of the agrochemicals on some selected soil microbes. The soil type used was loamy with pH of 6.0–7.0. The soil was placed in opaque pots and bambara bean (Vigna subterranean) seeds cultivated in them. The agrochemicals were applied two weeks after germination of seeds at concentrations based on manufacturer’s recommendation. Plant growth was assessed by weekly measurement of plant height, foliage appearance and number of nodules formed after one month. The results indicated that the diversity index (Di) among the bacteria populations in untreated soil and that of Cerox-treated soils were high with mean diversity index above 0.95. Mean Di for Ceresate-treated soil was 0.88, and that for Paraquattreated soil was 0.85 indicating low bacterial populations in these treatment-type soils. The study also showed that application of the agrochemicals caused reduction in the number of total heterotrophic bacteria population sizes in the soil. Ceresate caused 82.50% reduction in bacteria number from a mean of 40 × 105 cfu g−1 of soil sample to 70 × 104 cfu g−1. Paraquat-treated soil showed 92.86% reduction, from a mean of 56 × 105 cfu g−1 to 40 × 104 cfu g−1. Application of Cerox to the soil did not have any remarkable reduction in bacterial population number. Total viable cell count studies using Congo red yeast-extract mannitol agar indicated reduction in the number of Rhizobium spp. after application of the agrochemicals. Mean number of Rhizobium population numbers per gram of soil was 180 × 104 for the untreated soil. Cerox-treated soil recorded mean number of 138 × 104 rhizobial cfu g−1 of soil, a 23.33% reduction. Ceresate- and Paraquat-treated soils recorded 20 × 104 and 12 × 104 cfu g−1 of soil, respectively, representing 88.89% and 93.33% reduction in Rhizobium population numbers. Correspondingly, the mean number of nodules per plant was 44 for the growth in untreated soil, 30 for the plant in the Cerox-treated soil, 8 for the plant in Paraquat-treated soil and 3 for the plant in Ceresate-treated soil. The study has confirmed detrimental effect of insecticide on bacterial populations in the soil. Total heterotrophic counts, rhizobial counts as well as the number of nodules of all samples taken from the chemically treated soils were all low as compared to values obtained for the untreated soil. However, the effect of the insecticide was minimal in all cases as compared to the effects of the herbicides on the soil fauna. Indiscriminate use of agrochemicals on farms can therefore affect soil flora and subsequently food production.  相似文献   

15.
The high population growth rate of the African continent has led to an increased demand for food and is in danger of outstripping agricultural production. In order to meet this need, many governments have sought ways of improving food production by initiating large-scale irrigation projects, involving reclamation of arid and semi-arid areas for the cultivation of crops. Although crop irrigation promises one solution to alleviating hunger and encourages economic growth, irrigation has often been blamed for aggravating disease in local communities. Malaria is one of the major tropical diseases associated with irrigation schemes, and changes in the transmission pattern of this disease following irrigation development have been a perennial subject of debate. It has often been assumed that high numbers of malaria vector Anopheles mosquitoes (Diptera: Culicidae) resulting from irrigation schemes lead inevitably to increased malaria in local communities. However, recent studies in Africa have revealed a more complex picture. Increased numbers of vectors following irrigation can lead to increased malaria in areas of unstable transmission, where people have little or no immunity to malaria parasites, such as the African highlands and desert fringes. But for most of sub-Saharan Africa, where malaria is stable, the introduction of crop irrigation has little impact on malaria transmission. Indeed, there is growing evidence that for many sites there is less malaria in irrigated communities than surrounding areas. The explanation for this finding is still unresolved but, in some cases at least, can be attributed to displacement of the most endophilic and anthropophilic malaria vector Anopheles funestus Giles by An. arabiensis Patton with lower vectorial capacity, as the latter thrives more than the former in ricefields. Similarly, among members of the An. gambiae complex, some cytotypes of An. gambiae sensu stricto are more vectorial than others. For example, the Mopti form has high vectorial capacity and breeds perennially in irrigated sites, whereas the savanna form is often sympatric but more seasonal. Also we suggest that many communities near irrigation schemes benefit from the greater wealth created by these schemes. Consequently irrigation communities often have greater use of bednets, better access to improved healthcare and receive fewer infective bites compared with those outside such development schemes. Thus, in most cases, irrigation schemes in Africa do not appear to increase malaria risk, except in areas of unstable transmission. However, developers should take the opportunity to improve health-care facilities for local communities when planning irrigation schemes wherever they occur.  相似文献   

16.
The objective of the present research was to map QTLs associated with agronomic traits such as days from sowing to flowering, plant height, yield and leaf-related traits in a population of recombinant inbred lines (RILs) of sunflower (Helianthus annuus). Two field experiments were conducted with well-irrigated and partially irrigated conditions in randomized complete block design with three replications. A map with 304 AFLP and 191 SSR markers with a mean density of 1 marker per 3.7 cM was used to identify QTLs related to the studied traits. The difference among RILs was significant for all studied traits in both conditions. Three to seven QTLs were found for each studied trait in both conditions. The percentage of phenotypic variance (R 2) explained by QTLs ranged from 4 to 49%. Three to six QTLs were found for each yield-related trait in both conditions. The most important QTL for grain yield per plant on linkage group 13 (GYP-P-13-1) under partial-irrigated condition controls 49% of phenotypic variance (R 2). The most important QTL for 1,000-grain weight (TGW-P-11-1) was identified on linkage group 11. Favorable alleles for this QTL come from RHA266. The major QTL for days from sowing to flowering (DSF-P-14-1) were observed on linkage group 14 and explained 38% of the phenotypic variance. The positive alleles for this QTL come from RHA266. The major QTL for HD (HD-P-13-1) was also identified on linkage group 13 and explained 37% of the phenotypic variance. Both parents (PAC2 and RHA266) contributed to QTLs controlling leaf-related traits in both conditions. Common QTL for leaf area at flowering (LAF-P-12-1, LAF-W-12-1) was detected in linkage group 12. The results emphasise the importance of the role of linkage groups 2, 10 and 13 for studied traits. Genomic regions on the linkage groups 9 and 12 are specific for QTLs of leaf-related traits in sunflower.  相似文献   

17.
The impact of adult carabid beetles on below- and above-ground pests and fruit yield was examined in the laboratory and a two-year strawberry field study. In the laboratory, adults of Carabus nemoralis Muller, Nebria brevicollis (F.), Pterostichus algidus LeConte, Pterostichus melanarius (Illiger), and Scaphinotus marginatus Fischer (Coleoptera: Carabidae) consumed black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae) eggs, larvae and/or pupae placed on the surface. The same five carabid species showed no impact or low removal rates of O. sulcatus larvae that had burrowed into the root of potted strawberry plants. In an assay with only P. melanarius, adults consumed O. sulcatus larvae placed on the soil surface more frequently than larvae buried 1.3 or 5?cm below. In a field study, the density of adult carabids, predominantly P. melanarius, was manipulated with augmented, exclusion, and open control plots (2?×?2?m). Manipulating carabid density had no impact on the removal of sentinel O. sulcatus larvae and pupae that were buried belowground which is consistent with laboratory observations. Increasing carabid density within augmented plots led to greater removal of red clover seeds, Trifolium pratense L., placed on the soil surface in the first?year. Decreasing carabid density within exclusion plots resulted in fewer marketable fruits compared to control plots in both years. These results suggest that certain adult carabids may have limited impact belowground, and some beneficial impacts above-ground with pest control and crop protection.  相似文献   

18.
1. Density dependence is the effect of density on population growth. Density dependence is an aggregate term for a suite of complex interactions between animals and their environment. 2. Mechanistic studies of density dependence in mosquito ecology are sparse, and the role of environmental factors is poorly understood. 3. Two empirical study designs were compared to consider the interaction between nutritional availability and density in Aedes aegypti. First, larvae were fed per capita. Second, larvae were fed a fixed amount of food unadjusted for the number of individuals; therefore, at higher densities, individuals received less per capita. 4. Survivorship, wing length, and development rate were lower at high densities when larvae were fed a fixed, unadjusted amount of food. The opposite was observed when food was adjusted per capita, suggesting that high densities may be beneficial for larval development when per capita nutrition is held constant 5. These results demonstrate that negative associations between Ae. aegypti larval density and larval development are a manifestation of decreased per capita nutrient uptake at high densities. 6. Population regulation is a proportional response to environmental variability in Ae. aegypti. Increased survivorship at high densities when larvae were fed per capita demonstrates that nutritional availability is not the only mechanism of density dependence in mosquitoes. Further studies should characterise density dependence in mosquitoes by using mechanistic study designs across diverse environmental conditions.  相似文献   

19.
The contemporary oilseed sunflower (Helianthus annuus L.) gene pool is a product of multiple breeding and domestication bottlenecks. Despite substantial phenotypic diversity, modest differences in molecular genetic diversity have been uncovered in anciently and recently domesticated sunflowers. The paucity of molecular marker polymorphisms in early analyses led to the hypothesis of a single domestication origin. Phylogenetic analyses were performed on 47 domesticated and wild germplasm accessions using 122 microsatellite loci distributed throughout the sunflower genome. Extraordinary allelic diversity was found in the Native American land races and wild populations, and progressively less allelic diversity was found in germplasm produced by successive cycles of domestication and breeding. Of 1,341 microsatellite alleles, 489 were unique to land races, exotic domesticates and wild populations, whereas only 15 were unique to elite inbred lines. The number of taxon-specific alleles was 35-fold greater among wild populations (26.27) than elite inbred lines (0.75). Microsatellite genotyping uncovered the possibility of multiple domestication origins. Land races domesticated by Native Americans of the southwestern US (Hopi and Havasupai) formed a clade independent of land races domesticated by Native Americans of the Great Plains and eastern US (Arikara and Seneca). Predictably, domestication and breeding have ratcheted genetic diversity down in sunflower. The contemporary oilseed sunflower gene pool, while not imperiled, could profit from an infusion of novel alleles from the reservoir of latent genetic diversity present in wild populations and Native American land races.  相似文献   

20.
Abstract:  The impact of predatory, agroecosystem-nesting ant species on the larval stages of the two major lepidopteran pests, the diamondback moth (DBM), Plutella xylostella and the black cutworm (BC), Agrotis ipsilon , in cauliflower agroecosystem in Uttar Pradesh, India, was investigated in farmers' fields. Field observations revealed that six ant species, the most important being Pheidole sp., preyed on the crop-damaging stages of DBM and BC. Bait experiments with larvae of DBM and BC, placed randomly on the ground, demonstrated significant active retrieval by Pheidole sp. Investigations on larval density of both the insect pests on cauliflower crops, located within 1–5 m distances from nests of Pheidole sp., revealed a significant increase in the level of infestation of the crop plants with increasing distance from the ant nests. While a significant negative correlation was found between infested plants with low larval densities, a positive correlation was found between plants with high larval densities with regard to the distance of crop plant location from the ant nest. Ant-inclusion and -exclusion experiments under field conditions further confirmed the role of predatory ants, with Pheidole sp. having the major impact in the direct retrieval of the lepidopteran larvae from the crop plants. A significant difference was found in the leaf area damaged by BC larvae between the ant-included and -excluded potted plants during the 6-h observation period. Thus, this study provides direct evidence of the role of ants in actively searching and directly preying on the larval stages of DBM and BC, on cauliflower plants. Moreover, we demonstrate that in ephemeral, annual cropping agroecosystems, predatory ants are important natural enemies of lepidopteran pests, playing a significant role in plant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号