首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrity of genomic DNA during the cell division cycle in eukaryotic cells is maintained by regulated chromosomal DNA replication and repair of damaged DNA. We have used fractionation and reconstitution experiments to purify essential factors for the initiation of human chromosomal DNA replication in late G1 phase template nuclei from human cells. Here, we report the identification of soluble PCNA as an essential initiation factor in this system. Recombinant histidine-tagged human PCNA can substitute for purified endogenous human PCNA to initiate human chromosomal DNA replication. It is recruited specifically to discrete DNA replication foci formed during initiation in vitro. The template nuclei also contain DNA breaks as result of the synchronisation procedure. A separate population of chromatin-bound PCNA is already present in these template nuclei at discrete DNA damage foci, co-localising with gamma-H2AX, RPA and Rad51. This DNA damage-associated PCNA population is marked by mono-ubiquitination, suggesting that it is involved in DNA repair. Importantly, the population of damage focus-associated PCNA is neither involved in, nor required for, the initiation of chromosomal DNA replication in the same nuclei.  相似文献   

2.
We investigated the time periods of DNA replication, lateral cell wall extension, and septum formation within the cell cycle of Proteus mirabilis. Cells were cultivated under three different conditions, yielding interdivision times of approximately 55, 57, and 160 min, respectively. Synchrony was achieved by sucrose density gradient centrifugation. The time periods were estimated by division inhibition studies with cephalexin, mecillinam, and nalidixic acid. In addition, DNA replication was measured by thymidine incorporation, and murein biosynthesis was measured by incorporation of N-acetylglucosamine into sodium dodecyl sulfate-insoluble murein sacculi. At interdivision times of 55 to 57 min murein biosynthesis for reproduction of a unit cell lasted longer than the interdivision time itself, whereas DNA replication finished within 40 min. Surprisingly, inhibition of DNA replication by nalidixic acid did not inhibit the subsequent cell division but rather the one after that. Because P. mirabilis fails to express several reactions of the recA-dependent SOS functions known from Escherichia coli, the drug allowed us to determine which DNA replication period actually governed which cell division. Taken together, the results indicate that at an interdivision time of 55 to 57 min, the biosynthetic cell cycle of P. mirabilis lasts approximately 120 min. To achieve the observed interdivision time, it is necessary that two subsequent biosynthetic cell cycles be tightly interlocked. The implications of these findings for the regulation of the cell cycle are discussed.  相似文献   

3.
Resting cells of Escherichia coli are able to initiate growth and murein biosynthesis in the presence of beta-lactam antibiotics binding to penicillin-binding proteins (PBPs) 1a and 1b (E. J. de la Rosa, M. A. de Pedro, and D. Vázquez, Proc. Natl. Acad. Sci. USA 82:5632-5635, 1985). Under these conditions, cells elongate normally until they approach the first doubling in mass, the time at which cell lysis starts. Assuming that coupling between DNA replication and cell division both in cells starting growth and in growing cells is essentially similar, triggering of the lytic response in the beta-lactam-treated cells coincides with the termination of the first round of DNA replication. This coincidence suggests that both events are interrelated. We investigated this possibility by studying the initiation of growth in cultures of wild-type strains and in cell division mutants treated with beta-lactams inhibiting PBPs 1a and 1b and with the DNA replication inhibitor nalidixic acid. Addition of nalidixic acid, even late in the first cell cycle, prevented the lytic response of the cells to the blockade of PBPs 1a and 1b. The effect of nalidixic acid is more likely due to its action on DNA replication itself than to its indirect inhibitory effect on cell division or to its ability to induce the SOS system of the cell. These observations favor the idea that the cell wall biosynthetic machinery might be modulated by DNA replication at precise periods during cell growth.  相似文献   

4.
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.  相似文献   

5.
In Caulobacter crescentus, morphogenic events, such as cytokinesis, the establishment of asymmetry and the biogenesis of polar structures, are precisely regulated during the cell cycle by internal cues, such as cell division and the initiation of DNA replication. Recent studies have revealed that the converse is also true. That is, differentiation events impose regulatory controls on other differentiation events, as well as on progression of the cell cycle. Thus, there are pathways that sense the assembly of structures or the localization of complexes and then transduce this information to subsequent biogenesis or cell cycle events. In this review, we examine the interplay between flagellar assembly and the C. crescentus cell cycle.  相似文献   

6.
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation – from selecting replication start sites to replicative helicase loading and activation – and describe how these events are often distinctly regulated across different eukaryotic model organisms.  相似文献   

7.
Escherichia coli minichromosomes harboring as little as 327 base pairs of DNA from the chromosomal origin of replication (oriC) were found to replicate in a discrete burst during the division cycle of cells growing with generation times between 25 and 60 min at 37 degrees C. The mean cell age at minichromosome replication coincided with the mean age at initiation of chromosome replication at all growth rates, and furthermore, the age distributions of the two events were indistinguishable. It is concluded that initiation of replication from oriC is controlled in the same manner on minichromosomes and chromosomes over the entire range of growth rates and that the timing mechanism acts within the minimal oriC nucleotide sequence required for replication.  相似文献   

8.
9.
In eukaryotes DNA replication takes place in the S phase of the cell cycle. It initiates from hundreds to thousands of replication origins in a coordinated manner, in order to efficiently duplicate the genome. The sequence of events leading to the onset of DNA replication is conventionally divided in two interdependent processes: licensing-a process during which replication origins acquire replication competence but are kept inactive- and firing-a process during which licensed origins are activated but not re-licensed. In this review we investigate the evolutionary conservation of the molecular machinery orchestrating DNA replication initiation both in yeast and in mammalian cells, highlighting a remarkable conservation of the general architecture of this central biological mechanism. Many steps are conserved down to molecular details and are performed by orthologous proteins with high sequence conservation, while differences in molecular structure of the performing proteins and their interactions are apparent in other steps. Tight regulation of initiation of DNA replication is achieved through protein phosphorylation, exerted mostly by Cyclin-dependent kinases in order to ensure that each chromosome is fully replicated once, and only once, during each cycle, and to avoid the formation of aberrant DNA structures and incorrect chromosomal duplication, that in mammalian cells are a prerequisite for genome instability and tumorigenesis. We then consider a molecular mathematical model of DNA replication, recently proposed by our group in a collaborative project, as a frame of reference to discuss similarities and differences observed in the regulatory program controlling DNA replication initiation in yeast and in mammalian cells and discuss whether they may be dependent upon different functional constraints. We conclude that a systems biology approach, integrating molecular analysis with modeling and computational investigations, is the best choice to investigate the control of DNA replication in mammalian cells.  相似文献   

10.
刘阳  孙静亚  孔道春 《生命科学》2014,(11):1108-1119
DNA复制是细胞最基本的生命活动之一,是生物体生存和繁殖的基础。从原核生物到真核生物,DNA复制过程基本保守,分为复制起始和延伸两个阶段。复制叉是DNA复制的基本结构,它容易遭受多种内源或外源的DNA复制压力影响而停顿,导致基因组不稳定,引起细胞凋亡、癌变或细胞死亡等严重后果。为了维持复制叉的稳定,细胞进化出了一系列机制,其中最重要机制之一便是S期细胞周期检验点。就影响DNA复制叉稳定的内外因素、S期细胞周期检验点与复制叉稳定性的关系以及复制叉稳定性与相关疾病的发生、治疗等问题进行简要综述。  相似文献   

11.
The growth of human cancers is characterised by long and variable cell cycle times that are controlled by stochastic events prior to DNA replication and cell division. Treatment with radiotherapy or chemotherapy induces a complex chain of events involving reversible cell cycle arrest and cell death. In this paper we have developed a mathematical model that has the potential to describe the growth of human tumour cells and their responses to therapy. We have used the model to predict the response of cells to mitotic arrest, and have compared the results to experimental data using a human melanoma cell line exposed to the anticancer drug paclitaxel. Cells were analysed for DNA content at multiple time points by flow cytometry. An excellent correspondence was obtained between predicted and experimental data. We discuss possible extensions to the model to describe the behaviour of cell populations in vivo.  相似文献   

12.
Bates and Kleckner have recently proposed that bacterial cell division is a licensing agent for a subsequent initiation of DNA replication. They also propose that initiation mass for DNA replication is not constant. These two proposals do not take into account older data showing that initiation of DNA replication can occur prior to the division event. This critical analysis is derived from measurements of DNA replication during the division cycle in cells growing at different, and more rapid, growth rates. Furthermore, mutants impaired in division can initiate DNA synthesis. The data presented by Bates and Kleckner do not support the proposal that initiation mass is variable, and the proposed pattern of DNA replication during the division cycle of the K12 cells analysed is not consistent with prior data on the pattern of DNA replication during the division cycle.  相似文献   

13.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

14.
Initiation of eukaryotic DNA replication is a complex process including the recognition of initiation sites on DNA, multi-step DNA preparation for duplication, and assembly of multi-protein complexes capable of beginning DNA synthesis at initiation sites. The process starts at the late M phase and lasts till the appropriate time of the S phase for each initiation site. A chain of interesting interactions between Orc1p-6p, Cdc6p, Mcm2p-7p, Mcm10p, Cdt1, Cdc45p, Dbf4/Cdc7p, RPA, and DNA polymerase takes place during this period. The sequence of these interactions is controlled by cyclin-dependent kinases, as well as by ubiquitin-dependent proteolysis in the proteasome. This review summarizes the data on proteins initiating DNA replication and factors controlling their activities.  相似文献   

15.
In Caulobacter crescentus, morphogenic events, such as cytokinesis, the establishment of asymmetry and the biogenesis of polar structures, are precisely regulated during the cell cycle by internal cues, such as cell division and the initiation of DNA replication. Recent studies have revealed that the converse is also true. That is, differentiation events impose regulatory controls on other differentiation events, as well as on progression of the cell cycle. Thus, there are pathways that sense the assembly of structures or the localization of complexes and then transduce this information to subsequent biogenesis or cell cycle events. In this review, we examine the interplay between flagellar assembly and the C. crescentus cell cycle.  相似文献   

16.
17.
DNA replication and the frequency of cell division were studied in a microbial population in relation to the rate of cell growth. The relationship is based on the law of cell biomass linear increase during the cell cycle and on the exponential law of mean cell mass increase, and depends on the specific rate of population growth. The cell mass in the initiation of DNA replication is correlated with the number of initiation points basing on the Cooper-Helmstetter theory of DNA replication and taking account of the linear growth of mass in one cell. Possible applications of these relationships are discussed.  相似文献   

18.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   

19.
The harmonious growth and cell-to-cell uniformity of steady-state bacterial populations indicate the existence of a well-regulated cell cycle, responding to a set of internal signals. In Escherichia coli, the key events of this cycle are the initiation of DNA replication, nucleoid segregation and the initiation of cell division. The replication initiator is the DnaA protein. In nucleoid segregation, the MukB protein, required for proper partitioning, may be a member of the myosin-kinesin superfamily of mechanoenzymes. In cell division, the FtsZ protein has a tubulin motif, is a GTPase and polymerizes in a ring around midcell during septation; the FtsA protein has an actin-like structure. The nature of the internal signals triggering these events is not known but candidates include cell mass, the superhelical density of the chromosome and the concentration of two regulatory nucleotides, cyclic AMP and ppGpp. The involvement of cytoskeletal-like proteins in key cycle events encourages the notion of a fundamental biological unity in cell cycle regulation in all organisms.  相似文献   

20.
Cell lengths have been determined at which cycle events occur in the slow-growing Escherichia coli B/r substrains A, K, and F26. The radioautographic and electron microscope analyses allowed determination of the variations in length at birth, initiation and termination of DNA replication, and initiation of the constriction process and of cell separation. In all three substrains the standard deviation increased between cell birth and initiation of DNA replication. From there on, the standard deviation remained relatively constant until cell separation. These observations are consistent with the presence of a deterministic phase during the cell cycle in which the cell sizes at initation of DNA replication and at cell division are correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号