首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diaphorase activity of NADPH: adrenodoxin reductase (EC 1.18.1.2) is stimulated by adrenodoxin. The latter prevents the reductase inhibition by NADPH; the Line-weaver-Burk plots are characterized by a biphasic dependence of the reaction rate on the oxidizer concentration. At pH 7.0 the maximal rate of the first phase is 20s-1; that for the second phase at saturating concentrations of adrenodoxin is 5 s-1. Since the second phase rate is equal to that of the adrenodoxin-linked cytochrome c reduction by reductase it is concluded that this phase reflects the reduction of the oxidizers via reduced adrenodoxin. Quinones are reduced by adrenodoxin in an one-electron way; the logarithms of their rate constants depend hyperbolically on their single-electron reduction potentials (E7(1]. The oxidizers interact with a negatively charged domain of adrenodoxin. The depth of the adrenodoxin active center calculated from the Fe(EDTA)- reduction data is 5.9 A.  相似文献   

2.
Shakya SK  Gu W  Helms V 《Biopolymers》2005,78(1):9-20
The 128 amino acid long soluble protein adrenodoxin (Adx) is a typical member of the ferredoxin protein family that are electron carrier proteins with an iron-sulfur cofactor. Adx carries electrons from adrenodoxin reductase (AdR) to cytochrome P450s. Its binding modes to these proteins were previously characterized by site-directed mutagenesis, by X-ray crystallography for the complex Adx:AdR, and by NMR. However, no clear evidence has been provided for the driving force that promotes Adx detachment from AdR upon reduction. Here, we characterized the conformational dynamics of unbound Adx in the oxidized and reduced forms using 2-20 ns long molecular dynamics simulations. The most noticeable difference between both forms is the enhanced flexibility of the loop (47-51) surrounding the iron-sulfur cluster in the reduced form. Together with several structural displacements at the binding interface, this increased flexibility may be the key factor promoting unbinding of reduced Adx from AdR. This points to an intrinsic property of reduced Adx that drives dissociation.  相似文献   

3.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

4.
The single free cysteine at residue 95 of bovine adrenodoxin was labeled with the fluorescent reagent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS). The modification had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc, suggesting that the AEDANS group at Cys-95 was not located at the binding site for these molecules. Addition of adrenodoxin reductase, cytochrome P-450scc, or cytochrome c to AEDANS-adrenodoxin was found to quench the fluorescence of the AEDANS in a manner consistent with the formation of 1:1 binary complexes. F?rster energy transfer calculations indicated that the AEDANS label on adrenodoxin was 42 A from the heme group in cytochrome c, 36 A from the FAD group in adrenodoxin reductase, and 58 A from the heme group in cytochrome P-450scc in the respective binary complexes. These studies suggest that the FAD group in adrenodoxin reductase is located close to the binding domain for adrenodoxin but that the heme group in cytochrome P-450scc is deeply buried at least 26 A from the binding domain for adrenodoxin. Modification of all the lysines on adrenodoxin with maleic anhydride had no effect on the interaction with either adrenodoxin reductase or cytochrome P-450scc, suggesting that the lysines are not located at the binding site for either protein. Modification of all the arginine residues with p-hydroxyphenylglyoxal also had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc. These studies are consistent with the proposal that the binding sites on adrenodoxin for adrenodoxin reductase and cytochrome P-450scc overlap, and that adrenodoxin functions as a mobile electron carrier.  相似文献   

5.
The amino acid in position 49 in bovine adrenodoxin is conserved among vertebrate [2Fe-2S] ferredoxins as hydroxyl function. A corresponding residue is missing in the cluster-coordinating loop of plant-type [2Fe-2S] ferredoxins. To probe the function of Thr-49 in a vertebrate ferredoxin, replacement mutants T49A, T49S, T49L, and T49Y, and a deletion mutant, T49Delta, were generated and expressed in Escherichia coli. CD spectra of purified proteins indicate changes of the [2Fe-2S] center geometry only for mutant T49Delta, whereas NMR studies reveal no transduction of structural changes to the interaction domain. The redox potential of T49Delta (-370 mV) is lowered by approximately 100 mV compared with wild type adrenodoxin and reaches the potential range of plant-type ferredoxins (-305 to -455 mV). Substitution mutants show moderate changes in the binding affinity to the redox partners. In contrast, the binding affinity of T49Delta to adrenodoxin reductase and cytochrome P-450 11A1 (CYP11A1) is dramatically reduced. These results led to the conclusion that Thr-49 modulates the redox potential in adrenodoxin and that the cluster-binding loop around Thr-49 represents a new interaction region with the redox partners adrenodoxin reductase and CYP11A1. In addition, variations of the apparent rate constants of all mutants for CYP11A1 reduction indicate the participation of residue 49 in the electron transfer pathway between adrenodoxin and CYP11A1.  相似文献   

6.
A stable covalent complex was prepared by cross-linking adrenodoxin reductase with adrenodoxin using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was purified extensively until free components were removed completely. The major component of the complex had a molecular weight of 63 kDa, which corresponds to a 1:1 stoichiometric complex between adrenodoxin reductase and adrenodoxin. NADPH-cytochrome c reduction activity of the covalent complex was comparable to that of an equimolar mixture of adrenodoxin reductase and adrenodoxin (native complex), and the NADPH-ferricyanide reduction activity of the complex was equal to that of the native one. In contrast to the native complex, the covalent complex produced much less superoxide upon NADPH-oxidation, and the covalent complex was found to be more stable than the native complex, suggesting that the complex state is more favorable for catalysis. From these results, we conclude that the adrenodoxin molecule does not need to dissociate from the complex during electron transfer from NADPH to cytochrome c.  相似文献   

7.
Adrenodoxin stimulated the oxidation of NADPH by 1,4-benzoquinone, catalyzed by NADPH:adrenodoxin reductase. It prevented the enzyme inhibition by NADPH and formed an additional pathway of benzoquinone reduction presumably via reduced adrenodoxin. In the presence of 100-400 microM NADP+, which increased the Km of NADPH, adrenodoxin acted as a partial competitive inhibitor for NADPH decreasing its TN/Km by a limiting factor of 3. Ki of adrenodoxin decreased on the NADP+ concentration decrease and was estimated to be about 10(-8) M in the absence of NADP+.  相似文献   

8.
Adrenodoxin reductase (EC 1.18.1.2) catalyzes the oxidation of NADPH by 1.4-benzoquinone. The catalytic constant of this reaction at pH 7.0 is equal to 25-28 s-1. NADP+ acts as the mixed-type nonlinear inhibitor of enzyme increasing Km of NADPH and decreasing catalytic constant. NADP+ and NADPH act as mutually exclusive inhibitors relative to reduced adrenodoxin reductase. The patterns of 2',5'-ADP inhibition are analogous to that of NADP+. These data support the conclusion about the existence of second nicotinamide coenzyme binding centre in adrenodoxin reductase.  相似文献   

9.
T Taniguchi  T Kimura 《Biochemistry》1976,15(13):2849-2853
The coordination structure of the iron-sulfur center of the nitrotyrosine and the aminotyrosine derivates of bovine adrenodoxin was investigated by electron paramagnetic resonance spectroscopy. The reduced form of both modified samples exhibited signals identical with those for the native protein at g= 1.94 and g=2.01. From these results together with optical absorption and chemical analyses, it was concluded that the coordination structure of the iron-sulfur chromophore for both the derivatives was identical with the binuclear tetrahedral structure of native adrenodoxin. The configuration of the iron-binding area in nitro- and amino-adrenodoxin was studied by ovserving the circular dichroism spectra between 350 and 600 nm. The maxima for the nitro or amino derivatives were all identical with those for the native protein but different in the magnitude of their molar ellipticity. The molar ellipticities at 440 nm were 45.8 X 10(3), 14.5 X 10(3), and 9.5 X 10(6) deg cm2 per mol of iron for native adrenodoxin, nitro or amino derivative, respectively. These results suggest that the chemical modification of the tyrosine residue causes a conformational change in the iron-binding area. We have previously reported that the enzymatic activities of these reconstituted nitro and amino derivatives toware cytochrome c reduction in the presence of adrenodoxin reductase and reduced nicotinamide adenine dinucleotide phosphate were 19 and 7% of native adrenodoxin, respectively. The cytochrome c reductase activities of nitro- and aminoadrenodixin were drastically affected by the ionic strength of the assay medium, as found in native adrenodoxin. Fluorometric titration of the reductase with aminoadrenodoxin revealed that aminoadrenodoxin forms a 1:1 molar complex with the reductase. These results suggest that both the nitro and amino derivatives form a complex with the reductase. The dissociation constants of nitro- and aminoadrenodoxin for the reductase were 6.1 X 10(-7)M and 3.3 X 10(-7) M at mu = 0.04 and 1.9 X 10(-6) M and 2.0 X 10(-6) M at mu = 0.20, respectively. Comparison of these values with those of native adrenodoxin (approximately 10(-9) M at mu = 0.04 and 2.2 X 10(-7) M at mu = 0.20) suggests that an increase in the dissociation constant for the reductase is responsible for the decreased electron transferring activity of the modified adrenodoxins.  相似文献   

10.
Adrenodoxin reductase, the flavoprotein moiety of the adrenal cortex mitochondrial steroid hydroxylating system, participates in adrenodoxin-dependent cytochrome c and adrenodoxin-independent ferricyanide reduction, with NADPH as electron donor for both of these 1-electron reductions. For ferricyanide reduction, adrenodoxin reductase cycles between oxidized and 2-electron-reduced forms, reoxidation proceeding via the neutral flavin (FAD) semiquinone form (Fig. 9). Addition of adrenodoxin has no effect upon the kinetic parameters of flavoprotein-catalyzed ferricyanide reduction. For cytochrome c reduction, the adrenodoxin reductase-adrenodoxin 1:1 complex has been shown to be the catalytically active species (Lambeth, J. D., McCaslin, D. R., and Kamin, H. (1976) J. Biol. Chem. 251, 7545-7550). Present studies, using stopped flow techniques, have shown that the 2-electron-reduced form of the complex (produced by reaction with 1 eq of NADPH) reacts rapidly with 1 eq of cytochrome c (k approximately or equal to 4.6 s-1), but only slowly with a second cytochrome c (k = 0.1 to 0.3 s-1). However, when a second NADPH is included, two more equivalents of cytochrome are reduced rapidly. Thus, the adrenodoxin reductase-adrenodoxin complex appears to cycle between 1- and 3-electron reduced states, via an intermediate 2-electron-containing form produced by reoxidation by cytochrome (Fig. 10). For ferricyanide reduction by adrenodoxin reductase, the fully reduced and semiquinone forms of flavin each transfer 1 electron at oxidation-reduction potentials which differ by approximately 130 mV. However, adrenodoxin in a complex with adrenodoxin reductase allows electrons of constant potential to be delivered from flavin to cytochrome c via the iron sulfur center...  相似文献   

11.
Site-directed mutagenesis was utilized to enable direct expression of the mature form of bovine adrenodoxin cDNA using the pKK223-3 expression vector in Escherichia coli. Expression was under control of the "tac" promoter and resulted in a direct expression of soluble mature bovine adrenodoxin (greater than 15 mg per liter). Chromatographic behavior of recombinant adrenodoxin did not differ from that reported for mature native adrenodoxin. The purified recombinant protein was identical to native mitochondrial adrenodoxin on the basis of molecular weight, NH2 terminal sequencing and immunoreactivity. E. coli lysates were brown in color, and the purified protein possessed a visible absorbance spectra identical to native bovine adrenodoxin consistent with incorporation of a [2Fe-2S] cluster in vivo. Recombinant bovine adrenodoxin was active in cholesterol side-chain cleavage when reconstituted with adrenodoxin reductase and cytochrome P450scc and exhibited kinetics reported for native bovine adrenodoxin. The presence of the adrenodoxin amino terminal presequence does not appear to be essential for correct folding of mature recombinant adrenodoxin in E. coli. This expression system should prove useful for overexpression of adrenodoxin mutants in future structure/function studies. The approach described herein can potentially be used to directly express the mature form of any protein in bacteria.  相似文献   

12.
To further the understanding of the biological importance of metal-binding by avian prion proteins, we have investigated the affinity and selectivity of peptides Hx1 [Ac-HNPGYP-nh] and Hx2 [Ac-NPGYPHNPGYPH-nh] with a range of physiological metals via electrospray ionization mass spectrometry and tyrosine fluorescence emission spectroscopy. Both the hexamer Hx1 and the "dimer" peptide Hx2 bind only one equivalent of Cu(II), although only the latter peptide binds copper with significant affinity (Hx1 K(d)=150+/-35 microM; Hx2 K(d)=1.07+/-0.78 microM, pH 7.0 in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer). Both peptides are selective for Cu(II) over divalent Ca, Co, Mg, Mn, Ni, and Zn. Cyclic voltammetry was used to estimate Cu(II/I) solution potentials at pH 6.8, which were very similar for the two peptides (CuHx1 E degrees'=+350 mV, CuHx2 E degrees'=+320 mV vs. normal hydrogen electrode). These results suggest similar binding modes for the two peptides, and relative stabilization of Cu(I) relative to similar His-Gly-rich peptides in the literature.  相似文献   

13.
We have shown (Seybert, D., Lambeth, D., and Kamin, H. (1978), J. Biol. Chem. 253, 8355-8358) that, whereas the 1:1 complex between adrenodoxin reductase and adrenodoxin is the active species for cytochrome c reduction, the complex is not sufficient to allow cytochrome P-45011 beta-mediated hydroxylations;adrenodoxin in excess of reductase is required. In the present studies, reduction by NADPH of excess adrenodoxin is shown to occur at a rate sufficient to support both cytochrome P-450 11 beta-mediated hydroxylation of deoxycorticosterone, and cytochrome P-450sec-mediated side chain cleavage of cholesterol. Oxidation-reduction potential and ion effect studies indicate that the mechanism of steroidogenic electron transport involves an adrenodoxin electron "shuttle" rather than a macromolecular complex of reductase, adrenodoxin, and cytochrome. The oxidation-reduction potential of adrenodoxin is shifted about -100 mV when bound to reductase, and reduction of the iron-sulfur protein thus promotes dissociation of the complex. The rate of adrenodoxin reduction is first stimulated, then inhibited by increasing salt; the effect is ion-specific, with Ca2+ approximately Mg2+ greater than Na+ greater than NH/+. Similar ion-specific rate effects are observed for both of the cytochrome P-450-mediated hydroxylations, indicating that the same reduction mechanism is required for these reactions. Increasing salt concentrations caused dissociation of the complex; dissociation of the form of the complex containing reduced adrenodoxin occurred at lower salt concentrations than that containing oxidized adrenodoxin. The order of effectiveness of ions in causing dissociation is the same as the order for stimulation of adrenodoxin reduction, suggesting a dissociation step in the mechanism. This proposed model, together with dissociation constants for the form of the complex containing either oxidized or reduced adrenodoxin, allows accurate prediction of the salt rate effects curve. For all ions, an activity maximum is seen at the ion concentration which produces the largest molar difference between associated-oxidized and dissociated-reduced states, and the model predicts the positions of the maxima for adrenodoxin reduction, 11 beta-hydroxylation, and side chain cleavage. Thus reduction-induced dissociation of adrenodoxin from adrenodoxin reductase appears to be a required step in steroidogenic electron transport by this system, and a role for adrenodoxin as a mobile electron shuttle is proposed.  相似文献   

14.
We have previously reported that cytochrome P450scc activity in the human placenta is limited by the supply of electrons to the P450scc [Tuckey, R. C., Woods, S. T. & Tajbakhsh, M. (1997) Eur. J. Biochem. 244, 835-839]. The aim of the present study was to determine whether it is adrenodoxin reductase, adrenodoxin or both which limits cytochrome P450scc activity and hence progesterone synthesis in the placenta. We found that the concentrations of adrenodoxin reductase and adrenodoxin in placental mitochondria were both considerably lower than the concentrations of these proteins in the bovine adrenal cortex. When P450scc activity assays were carried out at high mitochondrial protein concentrations, we found that the addition of exogenous adrenodoxin reductase to sonicated mitochondria rescued pregnenolone synthesis to a level above that for intact mitochondria, showing that adrenodoxin is near-saturating in vivo. In contrast, pregnenolone synthesis by sonicated mitochondria was almost zero even after the addition of human adrenodoxin. This shows that the concentration of endogenous adrenodoxin reductase was insufficient to support appreciable rates of pregnenolone synthesis, even when concentrated mitochondrial samples were used. Comparative studies with human and bovine adrenodoxin reductase have revealed that a twofold higher concentration of human adrenodoxin reductase is required for maximal P450scc activity in the presence of saturating human adrenodoxin. Thus, not only is the adrenodoxin concentration low in placental mitochondria, but the amount required for maximal P450scc activity is higher than that for the bovine reductase. Overall, the data indicate that the adrenodoxin reductase concentration limits the activity of P450scc in placental mitochondria and hence determines the rate of progesterone synthesis.  相似文献   

15.
Using the pTrc99A/P450scc vector, a plasmid was constructed in which cDNAs for cytochrome P450scc, adrenodoxin reductase, and adrenodoxin are situated in a single expression cassette. This plasmid was shown to direct the synthesis of all the above proteins in Escherichia coli. Their localization in the E. coli cells and stoichiometry were determined. Cell homogenates exhibited cholesterol hydroxylase/lyase activity, due to catalytically active forms of all three proteins. Thus, the full set of constituents of the mammalian cholesterol hydroxylase/lyase system was shown to be synthesized in bacterial cells for the first time.  相似文献   

16.
The reactions of NADPH oxidation by quinones and inorganic complexes catalyzed by NADPH: adrenodoxin reductase were studied. The catalytic constant for the enzyme at pH 7.0 is 20-25 s-1; the oxidative constants for the quinones vary from 5 X 10(5) to 1.1 X 10(3) M-1 s-1 and show an increase with a rise in the one-electron acceptor reduction potential. The mode of adrenodoxin reductase interaction with oxyquinones differs from that of the enzyme interaction with alkyl-substituted quinones and inorganic complexes. NADPH competitively inhibits electron acceptors, whereas NADP+ is a competitive inhibitor of NADPH and a uncompetitive inhibitor of electron acceptors. (Ki = 25 microM). The depth of FAD incorporation into the enzyme molecule as calculated according to the outer sphere electron transfer theory is 6.1 A.  相似文献   

17.
The NADPH-cytochrome c reductase activity of NADPH-adrenodoxin reductase from NADPH to cytochrome c via adrenodoxin was inhibited by pyridoxal 5'-phosphate and other reagents that modified the lysine residues. However, the NADPH-ferricyanide reductase activity was not affected. Loss of the cytochrome c reductase activity could be prevented by adrenodoxin, but not by NADP+. One lysine residue of the adrenodoxin reductase could be protected from the modification with pyridoxal 5'-phosphate by complex formation with adrenodoxin. Loss of the NADPH-cytochrome c reductase activity was not due to the conformational change of the modified adrenodoxin reductase, judging from circular dichroism spectrometric studies.  相似文献   

18.
The intrinsic isotope effect on the reduction of the FAD-containing dehydrogenase electron transferase, adrenodoxin reductase, by (4S)-[2H]NADPH has been determined to be 7.1 to 7.7. The replacement of FAD by a series of FAD analogs at the active site of adrenodoxin reductase with oxidation-reduction potentials which vary over a range of 212 mV has made it possible to extrapolate to this limiting value from the variation in the observed isotope effect on Vmax with flavin midpoint potential. Stop-flow studies which allow the direct determination of the intrinsic isotope effect on the reductive half-reaction corroborate this result. During the steady state reduction of ferricyanide by the native enzyme under conditions of Vmax, this isotope effect is almost fully expressed (VH/VD = 6.7 to 6.8). In contrast, we observe a dramatic attenuation of the intrinsic isotope effect (due to hydride transfer to flavin) when the oxidative half-reaction is mediated by the natural acceptor protein, the 2Fe/2S ferredoxin, adrenodoxin. In a coupled three-protein system, the adrenodoxin-mediated reductions of both the artificial electron acceptor, cytochrome c, and the physiological electron acceptor, cytochrome P-450scc, by adrenodoxin reductase occur at similar rates and with similar kinetic isotope effects (1.9 to 2.0) when (4S)-[2H]NADPH is the reductant. We infer similar mechanisms for the reduction of both cytochromes. These results are in agreement with previous studies (Lambeth, J.D., and Kamin, H. (1979) J. Biol. Chem. 254, 2766-2774) which show that the reductive half-reaction is not solely rate-determining in adrenodoxin-mediated processes. The observation of a linear free energy relationship between Vmax and the flavin midpoint potential during steady state reduction of ferricyanide confirms that the reductive half-reaction is rate-determining in this assay. The relationship between Vmax and flavin midpoint potential in reactions which require adrenodoxin suggests that the midpoint potential of native adrenodoxin reductase has been optimized. Thus, the apoenzyme of adrenodoxin reductase tailors the midpoint potential of bound FAD in order to balance the activation energies of the reductive and oxidative half-reactions.  相似文献   

19.
Steady-state current-potential curves were obtained for the direct electron transfer (DET) of bilirubin oxidase (BOD) at a highly oriented pyrolytic graphite electrode, and the theoretical analysis based on nonlinear regression enabled us to determine the formal redox potential (E degrees') of BOD in a wide pH range of 2.0 to 8.5. Cyclic voltammetric measurements were also performed for substrates, including p-phenylenediamine (PPD), o-aminophenol (OAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and their E degrees ' values or the anodic peak potentials (for OAP) were determined at various pH values. The difference in the redox potentials between BOD and substrates (DeltaE degrees') showed a maximum at pH 6.5 to 8.0, pH 6.5 to 8.0, and pH 3.5 to 4.5 for PPD, OAP, and ABTS, respectively. These pH ranges should be thermodynamically most favorable for the electron transfer between BOD and the respective substrates. In practice, the pH ranges showing a maximum DeltaE degrees' corresponded well with the optimum pH values for the O(2) reduction activity of BOD: pH 6.5 to 7.5, pH 8.0 to 8.5, and pH 4.0 for PPD, OAP, and ABTS, respectively. Thus, it was suggested that DeltaE degrees ' should be one of the primary factors determining the activity of BOD with the substrates.  相似文献   

20.
NADPH-dependent adrenodoxin reductase, adrenodoxin and several diverse cytochromes P450 constitute the mitochondrial steroid hydroxylase system of vertebrates. During the reaction cycle, adrenodoxin transfers electrons from the FAD of adrenodoxin reductase to the heme iron of the catalytically active cytochrome P450 (P450scc). A shuttle model for adrenodoxin or an organized cluster model of all three components has been discussed to explain electron transfer from adrenodoxin reductase to P450. Here, we characterize new covalent, zero-length crosslinks mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide between bovine adrenodoxin and adrenodoxin reductase, and between adrenodoxin and P450scc, respectively, which allow to discriminate between the electron transfer models. Using Edman degradation, mass spectrometry and X-ray crystallography a crosslink between adrenodoxin reductase Lys27 and adrenodoxin Asp39 was detected, establishing a secondary polar interaction site between both molecules. No crosslink exists in the primary polar interaction site around the acidic residues Asp76 to Asp79 of adrenodoxin. However, in a covalent complex of adrenodoxin and P450scc, adrenodoxin Asp79 is involved in a crosslink to Lys403 of P450scc. No steroidogenic hydroxylase activity could be detected in an adrenodoxin -P450scc complex/adrenodoxin reductase test system. Because the acidic residues Asp76 and Asp79 belong to the binding site of adrenodoxin to adrenodoxin reductase, as well as to the P450scc, the covalent bond within the adrenodoxin-P450scc complex prevents electron transfer by a putative shuttle mechanism. Thus, chemical crosslinking provides evidence favoring the shuttle model over the cluster model for the steroid hydroxylase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号