首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A technique has been perfected for measuring the sedimentation coefficient of microgram quantities of a reduced protein in 6 M guanidine hydrochloride. The protein is sedimented through a gradient of 5-8 M guanidine-HCl in the presence of dithiothreitol in a SW 50.1 swinging-bucket rotor. Run conditions are calibrated by a simultaneous measurement using a single reference protein. Thus, the need for running a calibration curve involving several standard proteins simultaneously with a sample is eliminated. Because of the trace quantity of protein used, the technique yields an estimate of the sedimentation coefficient at zero concentration (s0) directly without extrapolation. Since s0 is a function of the molecular weight of a reduced protein in this solvent, the method also allows an estimate of the subunit molecular weight of the protein. The results of the application of the method to known proteins are reported.  相似文献   

3.
Summary There is now substantial evidence that perisinusoidal (Ito or fat-storing) cells are the principal source of extracellular matrix proteins during hepatic fibrogenesis. In rat liver these cells express the intermediate fiament protein desmin; this is now widely used as an immunohistochemical marker for these cells. It has been shown that in experimental models of acute and chronic liver injury there is an increase in the number of desmin-positive perisinusoidal cells prior to the deposition of matrix proteins; however, these studies have failed to establish whether local proliferation is involved in this expansion of the desmin-positive perisinusoidal cell population.In order to investigate the kinetics of the perisinusoidal cell response, we have developed a novel double-labelling immunohistochemical technique for the simultaneous demonstration of desmin and incorporated bromodeoxyuridine in proliferating perisinusoidal cells in sections of fixed paraffiin-embedded rat liver. Application of this technique to a model of acute liver injury (single dose carbon tetrachloride by gavage) has shown that expansion of the perisinusoidal cell population is contributed to by local proliferation, with a labelling index of 18.7% 2 days following injury.  相似文献   

4.
We previously described the isolation of a variant subline of HL-60 cells that does not differentiate in response to nitric oxide (NO)-generating agents or to cGMP analogs [7]. The variant cells have normal guanylate cyclase activity and normal NO-induced increases in the intracellular cGMP concentration. We now show that the variant cells have normal cGMP-dependent protein kinase (G-kinase) activity, both by an in vitro and in vivo assay, and using two-dimensional gel electrophoresis we have identified six G-kinase substrates in the parental cells. Of these six proteins, we found considerably less phosphorylation of one of the proteins in the variant cells than in parental cells, both in vitro and in intact cells, and by 35S-methionine/35S-cysteine incorporation we found much less of this protein in the variant cells than in parental cells. The protein is a shared substrate of cAMP-dependent protein kinase (A-kinase); since cAMP analogs still induce differentiation of the variant cells, it appears that the NO/cGMP/G-kinase and cAMP/A-kinase signal transduction pathways share some but not all of the same target proteins in inducing differentiation of HL-60 cells.  相似文献   

5.
We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment.  相似文献   

6.
Song X  Zhou T  Jia H  Guo X  Zhang X  Han P  Sha J 《PloS one》2011,6(11):e27836
Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users.  相似文献   

7.
Recombinant protein expression in mammalian cells has become a very important technique over the last twenty years. It is mainly used for production of complex proteins for biopharmaceutical applications. Transient recombinant protein expression is a possible strategy to produce high quality material for preclinical trials within days. Viral replicon based expression systems have been established over the years and are ideal for transient protein expression. In this study we describe the evaluation of an influenza A replicon for the expression of recombinant proteins. We investigated transfection and expression levels in HEK-293 cells with EGFP and firefly luciferase as reporter proteins. Furthermore, we studied the influence of different influenza non-coding regions and temperature optima for protein expression as well. Additionally, we exploited the viral replication machinery for the expression of an antiviral protein, the human monoclonal anti-HIV-gp41 antibody 3D6. Finally we could demonstrate that the expression of a single secreted protein, an antibody light chain, by the influenza replicon, resulted in fivefold higher expression levels compared to the usually used CMV promoter based expression. We emphasize that the influenza A replicon system is feasible for high level expression of complex proteins in mammalian cells.  相似文献   

8.
A common way to study protein function is to deplete the protein of interest from cells and observe the response. Traditional methods involve disrupting gene expression but these techniques are only effective against newly synthesized proteins and leave previously existing and stable proteins untouched. Here, we introduce a technique that induces the rapid degradation of specific proteins in mammalian cells by shuttling the proteins to the proteasome for degradation in a ubiquitin-independent manner. We present two implementations of the system in human culture cells that can be used individually to control protein concentration. Our study presents a simple, robust, and flexible technology platform for manipulating intracellular protein levels.  相似文献   

9.
Intracellular trafficking and localization of proteins can now be efficiently visualized by fusion of a polypeptide to the green fluorescent protein (GFP). Many spectral variants of this reagent are now available, providing powerful tools for studies in living cells. This approach is particularly useful for members of the steroid/nuclear receptor superfamily, since these molecules frequently undergo rapid subcellular redistribution on ligand activation. A major roadblock in the application of this technology concerns problems associated with transient transfections. This technique produces cell populations that are highly heterogeneous with respect to the newly introduced protein and usually contain the protein in a highly overexpressed state. In addition, long-term studies related to cell cycle and cellular differentiation are essentially impossible with this approach. These problems can be overcome by introduction of the GFP fusion into cells under appropriate induction control. We describe application of the tetracycline regulatory system to inducible control of a glucocorticoid receptor (GR)/GFP chimera. Intracellular concentrations of GFP-GR can be very effectively controlled in this system, providing an ideal environment in which to study subcellular trafficking of the receptor and interactions with a variety of intracellular targets.  相似文献   

10.
It has been shown previously that Drosophila cells infected with black beetle virus synthesize an early viral protein, protein A, a putative element of the viral RNA polymerase. Synthesis of protein A declines sharply by 6 h postinfection, whereas synthesis of viral coat protein alpha continues for at least 14 h. The early shutoff in protein A synthesis occurred despite the presence of equimolar proportions of the mRNAs for proteins A and alpha, RNAs 1 and 2, respectively. We have now been able to mimic this translational discrimination in a cell-free protein-synthesizing system prepared from infected or uninfected Drosophila cells, thus allowing further analysis of the mechanism by which translation of RNA 1 is selectively turned off. The results revealed no evidence for control by virus-encoded proteins or by virus-induced modification of mRNAs by the cell-free system. Rather, with increasing RNA concentration, viral RNA 1 was outcompeted by its genomic partner, RNA 2. This suggests that the early shutoff in intracellular synthesis of protein A is due to decreasing ability of RNA 1 to compete for a rate-controlling translational factor(s) as the concentration of viral RNAs accumulates within the infected cell.  相似文献   

11.
Shedding (i.e. proteolysis of ectodomains of membrane proteins) plays an important pathophysiological role. In order to study the feasibility of identifying shed proteins, we analyzed serum-free media of human mammary epithelial cells by mass spectrometry following induction of shedding by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). Different means of sample preparation, including biotinylation of cell surface proteins, isolation of glycosylated proteins, and preparation of crude protein fractions, were carried out to develop the optimal method of sample processing. The collected proteins were digested with trypsin and analyzed by reversed-phase capillary liquid chromatography interfaced to an ion-trap mass spectrometer. The resulting peptide spectra were interpreted using the program SEQUEST. Analyzing the sample containing the crude protein mixture without chemical modification or separation resulted in the greatest number of identifications, including putatively shed proteins. Overall, 45 membrane-associated proteins were identified including 22 that contain at least one transmembrane domain and 23 that indirectly associate with the extracellular surface of the plasma membrane. Of the 22 transmembrane proteins, 18 were identified by extracellular peptides providing strong evidence they originate from regulated proteolysis or shedding processes. We combined results from the different experiments and used a peptide count method to estimate changes in protein abundance. Using this approach, we identified two proteins, syndecan-4 and hepatoma-derived growth factor, whose abundances increased in media of cells treated with PMA. We also detected proteins whose abundances decreased after PMA treatment such as 78 kDa glucose-regulated protein and lactate dehydrogenase A. Further analysis using immunoblotting validated the abundance changes for syndecan-4 and 78 kDa glucose-regulated protein as a result of PMA treatment. These results demonstrate that tandem mass spectrometry can be used to identify shed proteins and to estimate changes in protein abundance.  相似文献   

12.
There is now increasing evidence suggesting that non-enzymatic glycation (NEG) of proteins is involved in the pathogenesis of chronic diabetic complication. In this study we demonstrate that chronic exposure to high-glucose concentration leads to intracellular protein glycation in cultured bovine retinal capillary pericytes and endothelial cells. The level of intracellular protein glycation, as measured using a competitive enzyme-linked immunoabsorbant assay (ELISA), was found to increase in both pericytes and endothelial cells as function of time. As expected products of NEG were only detected when the Schiff base and the Amadori products were chemically reduced to glucitollysine by sodium borohydride. Despite the accumulation of early glycation products on cellular proteins there was no further rearrangement reaction into advanced glycation endproducts (AGEs), even after 12 days of incubation in high-glucose medium. Immunofluorescence microscopy demonstrated that the monoclonal antibody reacting with glucitollysine stains the cytoplasm of both pericytes and endothelial cells in a finely punctate pattern. Further studies using Western blot analysis suggested that a number of cellular proteins, including smooth muscle actin in pericytes, become rapidly glycated. The results from this in vitro study suggest that excessive accumulation of early products of non-enzymatic glycation in pericytes and endothelial cells may play an important role in the pathogenesis of diabetic retinopathy.  相似文献   

13.
In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker''s yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions.  相似文献   

14.
15.
Human blood plasma can be obtained relatively noninvasively and contains proteins from most, if not all, tissues of the body. Therefore, an extensive, quantitative catalog of plasma proteins is an important starting point for the discovery of disease biomarkers. In 2005, we showed that different proteomics measurements using different sample preparation and analysis techniques identify significantly different sets of proteins, and that a comprehensive plasma proteome can be compiled only by combining data from many different experiments. Applying advanced computational methods developed for the analysis and integration of very large and diverse data sets generated by tandem MS measurements of tryptic peptides, we have now compiled a high-confidence human plasma proteome reference set with well over twice the identified proteins of previous high-confidence sets. It includes a hierarchy of protein identifications at different levels of redundancy following a clearly defined scheme, which we propose as a standard that can be applied to any proteomics data set to facilitate cross-proteome analyses. Further, to aid in development of blood-based diagnostics using techniques such as selected reaction monitoring, we provide a rough estimate of protein concentrations using spectral counting. We identified 20,433 distinct peptides, from which we inferred a highly nonredundant set of 1929 protein sequences at a false discovery rate of 1%. We have made this resource available via PeptideAtlas, a large, multiorganism, publicly accessible compendium of peptides identified in tandem MS experiments conducted by laboratories around the world.  相似文献   

16.
Estimation of the concentration of a specific protein in a biological sample often is obtained by analysis of immunoblots. We used this technique to estimate the concentration of three proteins present in homogenates of brain: glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and synapsin I. Homogenates prepared from rat brains known to contain more than 6-fold increases in GFAP, based on a GFAP enzyme-linked immunosorbent assay (ELISA), showed only small relative increases in this protein when the same samples were subjected to immunoblot analysis with polyclonal or monoclonal anti-GFAP; quantification was based on PhosphorImager analysis of [(125)I] protein A bound to the antibodies. Estimates of GFAP in the GFAP-enriched samples approached the expected 6-fold increase when the total protein load per gel lane was reduced from 30 to 1 microgram. Pure GFAP run as standard was not affected by 10-fold increases in protein load, but spiking brain homogenates with pure GFAP "quenched" the values obtained for the standard run alone. Examination of the quenching potential of pure brain tubulin, a protein that nearly comigrates with GFAP on SDS gels, showed that it may be one component of brain homogenates that contributes to masking of immunodetection of GFAP. The effect of total brain homogenate proteins on the signal obtained for a specific protein was not limited to GFAP; similar effects were observed for MBP and synapsin I. The data indicate that estimates of the concentration of a specific protein, whether as a function of its relative amount in a given protein mixture or its relative amount in one mixture compared to another, are influenced by other homogenate proteins present in the mixture.  相似文献   

17.
The formation of membrane-less organelles and compartments by protein phase separation is an important way in which cells organize their cytoplasm and nucleoplasm. In vitro phase separation assays with purified proteins have become the standard way to investigate proteins that form membrane-less compartments. By now, various proteins have been purified and tested for their ability to phase separate and form liquid condensates in vitro. However, phase-separating proteins are often aggregation-prone and difficult to purify and handle. As a consequence, the results from phase separation assays often differ between labs and are not easily reproduced. Thus, there is an urgent need for high-quality proteins, standardized procedures, and generally agreed-upon practices for protein purification and conducting phase separation assays. This paper provides protocols for protein purification and guides the user through the practicalities of in vitro protein phase separation assays, including best-practice approaches and pitfalls to avoid. We believe that this compendium of protocols and practices will provide a useful resource for scientists studying the phase behavior of proteins.  相似文献   

18.
Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology.  相似文献   

19.
As a death factor of T cells and Natural Killer (NK) cells, Fas Ligand (FasL) is stored in association with secretory lysosomes. Upon stimulation, these cytotoxic granules are transported to the cell membrane where FasL is exposed on the cell surface, shed or secreted. It has been noted before that the proline-rich domain within the cytosolic part of FasL is required for its vesicular association. However, the molecular interactions involved in targeting FasL to secretory lysosomes or to the plasma membrane have not been elucidated. We now identified a family of structurally related proteins that upon co-expression with FasL reallocate the death factor from a membrane to an intracellular localization. Members of this protein family are characterized by a similar domain structure and include FBP17, PACSIN1-3, CD2BP1, CIP4, Rho-GAP C1 and several hypothetical proteins. We show that all tested members of this "FCH/SH3-family" co-precipitate FasL from transfectants. The interactions strictly depend on functional SH3 domains within the FCH/SH3 proteins. Since co-expression of FasL with individual FCH/SH3 proteins dramatically alters the intracellular localization of FasL especially in non-hematopoietic cells, our data suggest that FCH/SH3 proteins might play an important role for the subcellular distribution and lysosomal association of FasL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号