首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAPkinase signalling is essential for cell growth, differentiation and cell physiology. G proteins and tyrosine kinase receptors each modulate MAPkinase signalling through distinct pathways. We report here that RGS14 is an integrator of G protein and MAPKinase signalling pathways. RGS14 contains a GPR/GoLoco (GL) domain that forms a stable complex with inactive Giα1/3–GDP, and a tandem (R1, R2) Ras binding domain (RBD). We find that RGS14 binds and regulates the subcellular localization and activities of H-Ras and Raf kinases in cells. Activated H-Ras binds RGS14 at the R1 RBD to form a stable complex at cell membranes. RGS14 also co-localizes with and forms a complex with Raf kinases in cells. The regulatory region of Raf-1 binds the RBD region of RGS14, and H-Ras and Raf each facilitate one another's binding to RGS14. RGS14 selectively inhibits PDGF-, but not EGF- or serum-stimulated Erk phosphorylation. This inhibition is dependent on H-Ras binding to RGS14 and is reversed by co-expression of Giα1, which binds and recruits RGS14 to the plasma membrane. Giα1 binding to RGS14 inhibits Raf binding, indicating that Giα1 and Raf binding to RGS14 are mutually exclusive. Taken together, these findings indicate that RGS14 is a newly appreciated integrator of G protein and Ras/Raf signalling pathways.  相似文献   

2.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Binding of the protein Raf to the active form of Ras promotes activation of the MAP kinase signaling pathway, triggering cell growth and differentiation. Raf/Arg89 in the center of the binding interface plays an important role determining Ras-Raf binding affinity. We have investigated experimentally and computationally the Raf-R89K mutation, which abolishes signaling in vivo. The binding to [gamma-35S]GTP-Ras of a fusion protein between the Raf-binding domain (RBD) of Raf and GST was reduced at least 175-fold by the mutation, corresponding to a standard binding free energy decrease of at least 3.0 kcal/mol. To compute this free energy and obtain insights into the microscopic interactions favoring binding, we performed alchemical simulations of the RBD, both complexed to Ras and free in solution, in which residue 89 is gradually mutated from Arg into Lys. The simulations give a standard binding free energy decrease of 2.9+/-1.9 kcal/mol, in agreement with experiment. The use of numerous runs with three different force fields allows insights into the sources of uncertainty in the free energy and its components. The binding decreases partly because of a 7 kcal/mol higher cost to desolvate Lys upon binding, compared to Arg, due to better solvent interactions with the more concentrated Lys charge in the unbound state. This effect is expected to be general, contributing to the lower propensity of Lys to participate in protein-protein interfaces. Large contributions to the free energy change also arise from electrostatic interactions with groups up to 8 A away, namely residues 37-41 in the conserved effector domain of Ras (including 4 kcal/mol from Ser39 which loses a bifurcated hydrogen bond to Arg89), the conserved Lys84 and Lys87 of Raf, and 2-3 specific water molecules. This analysis will provide insights into the large experimental database of Ras-Raf mutations.  相似文献   

4.
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (RasGTP) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (RasGDP) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with RasGDP. Most of our designed mutations narrow the gap between the affinity of Raf for RasGTP and RasGDP, producing the desired shift in binding specificity towards RasGDP. A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards RasGDP. The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of RasGDP bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the RasGDP·Raf mutant complex is found in a conformation similar to that of RasGTP and not RasGDP. Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in RasGTP is likely to explain the natural low affinity of Raf and other Ras effectors to RasGDP. Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.  相似文献   

5.
A class of putative Ras effectors called Ras association domain family (RASSF) represents non-enzymatic adaptors that were shown to be important in tumour suppression. RASSF5, a member of this family, exists in two splice variants known as NORE1A and RAPL. Both of them are involved in distinct cellular pathways triggered by Ras and Rap, respectively. Here we describe the crystal structure of Ras in complex with the Ras binding domain (RBD) of NORE1A/RAPL. All Ras effectors share a common topology in their RBD creating an interface with the switch I region of Ras, whereas NORE1A/RAPL RBD reveals additional structural elements forming a unique Ras switch II binding site. Consequently, the contact area of NORE1A is extended as compared with other Ras effectors. We demonstrate that the enlarged interface provides a rationale for an exceptionally long lifetime of the complex. This is a specific attribute characterizing the effector function of NORE1A/RAPL as adaptors, in contrast to classical enzymatic effectors such as Raf, RalGDS or PI3K, which are known to form highly dynamic short-lived complexes with Ras.  相似文献   

6.
Genetic and biochemical evidence suggests that the Ras protooncogene product regulates the activation of the Raf kinase pathway, leading to the proposal that Raf is a direct mitogenic effector of activated Ras. Here we report the use of a novel competition assay to measure in vitro the relative affinity of the c-Raf-1 regulatory region for Ras-GTP, Ras-GDP, and 10 oncogenic and effector mutant Ras proteins. c-Raf-1 associates with normal Ras and the oncogenic V12 and L61 forms of Ras with equal affinity. The moderately transforming mutant Ras[E30K31] also bound to the c-Raf-1 regulatory region with normal affinity. Transformation-defective Ras effector mutants Ras[N33], Ras[S35], and Ras[N38] bound poorly. In contrast, the transformation defective Ras[G26I27] and Ras[E45] mutants bound to the c-Raf-1 regulatory region with nearly wild-type affinity. A stable, high-affinity Ras-binding region of c-Raf-1 was mapped to a 99-amino-acid subfragment of the first 257 residues. The smallest Ras-binding region identified consisted of N-terminal residues 51 to 131, although stable expression of the domain and high-affinity binding were improved by the presence of residues 132 to 149. Deletion of the Raf zinc finger region did not reduce Ras-binding affinity, while removal of the first 50 amino acids greatly increased affinity. Phosphorylation of Raf[1-149] by protein kinase A on serine 43 resulted in significant inhibiton of Ras binding. demonstrating that the mechanism of cyclic AMP downregulation results through structural changes occurring exclusively in this small Ras-binding domain.  相似文献   

7.
Mechanisms of regulating the Raf kinase family   总被引:28,自引:0,他引:28  
The MAP Kinase pathway is a key signalling mechanism that regulates many cellular functions such as cell growth, transformation and apoptosis. One of the essential components of this pathway is the serine/threonine kinase, Raf. Raf (MAPKK kinase, MAPKKK) relays the extracellular signal from the receptor/Ras complex to a cascade of cytosolic kinases by phosphorylating and activating MAPK/ERK kinase (MEK; MAPK kinase, MAPKK) that phosphorylates and activates extracellular signal regulated kinase (ERK; mitogen-activated protein kinase, MAPK), which phosphorylates various cytoplasmic and nuclear proteins. Regulation of both Ras and Raf is crucial in the proper maintenance of cell growth as oncogenic mutations in these genes lead to high transforming activity. Ras is mutated in 30% of all human cancers and B-Raf is mutated in 60% of malignant melanomas. The mechanisms that regulate the small GTPase Ras as well as the downstream kinases MEK and extracellular signal regulated kinase (ERK) are well understood. However, the regulation of Raf is complex and involves the integration of other signalling pathways as well as intramolecular interactions, phosphorylation, dephosphorylation and protein-protein interactions. From studies using mammalian isoforms of Raf, as well as C. elegans lin45-Raf, common patterns and unique differences of regulation have emerged. This review will summarize recent findings on the regulation of Raf kinase.  相似文献   

8.
Small GTPases of the Ras family are major players of signal transduction in eukaryotic cells. They receive signals from a number of receptors and transmit them to a variety of effectors. The distribution of signals to different effector molecules allows for the generation of opposing effects like proliferation and differentiation. To understand the specificity of Ras signaling, we investigated the activation of RalGDS, one of the Ras effector proteins with guanine-nucleotide exchange factor activity for Ral. We determined the GTP level on RalA and showed that the highly conserved Ras binding domain (RBD) of RalGDS, which mediates association with Ras, is important but not sufficient to explain the stimulation of the exchange factor. Although a point mutation in the RBD of RalGDS, which abrogates binding to Ras, renders RalGDS independent to activated Ras, an artificially membrane-targeted version of RalGDS lacking its RBD could still be activated by Ras. The switch II region of Ras is involved in the activation, because the mutant Y64W in this region is impaired in the RalGDS activation. Furthermore, it is shown that Rap1, which was originally identified as a Ras antagonist, can block Ras-mediated RalGDS signaling only when RalGDS contains an intact RBD. In addition, kinetic studies of the complex formation between RalGDS-RBD and Ras suggest that the fast association between RalGDS and Ras, which is analogous to the Ras/Raf case, achieves signaling specificity. Conversely, the Ras x RalGDS complex has a short lifetime of 0.1 s and Rap1 forms a long-lived complex with RalGDS, possibly explaining its antagonistic effect on Ras.  相似文献   

9.
BACKGROUND: The small GTP binding protein Ras has important roles in cellular growth and differentiation. Mutant Ras is permanently active and contributes to cancer development. In its activated form, Ras interacts with effector proteins, frequently initiating a kinase cascade. In the lower eukaryotic Schizosaccharomyces pombe, Byr2 kinase represents a Ras target that in terms of signal-transduction hierarchy can be considered a homolog of mammalian Raf-kinase. The activation mechanism of protein kinases by Ras is not understood, and there is no detailed structural information about Ras binding domains (RBDs) in nonmammalian organisms. RESULTS: The crystal structure of the Ras-Byr2RBD complex at 3 A resolution shows a complex architecture similar to that observed in mammalian homologous systems, with an interprotein beta sheet stabilized by predominantly polar interactions between the interacting components. The C-terminal half of the Ras switch I region contains most of the contact anchors, while on the Byr2 side, a number of residues from topologically distinct regions are involved in complex stabilization. A C-terminal helical segment, which is not present in the known mammalian homologous systems and which is part of the auto-inhibitory region, has an additional binding site outside the switch I region. CONCLUSIONS: The structure of the Ras-Byr2 complex confirms the Ras binding module as a communication element mediating Ras-effector interactions; the Ras-Byr2 complex is also conserved in a lower eukaryotic system like yeast, which is in contrast to other small GTPase families. The extra helical segment might be involved in kinase activation.  相似文献   

10.
BACKGROUND: After activation, small GTPases such as Ras transfer the incoming signal to effectors by specifically interacting with the binding domain of these proteins. Structural details of the binding domain of different effectors determine which pathway is predominantly activated. Byr2 from fission yeast is a functional homolog of Raf, which is the direct downstream target of Ras in mammalians that initiates a protein kinase cascade. The amino acid sequence of Byr2's Ras binding domain is only weakly related to that of Raf, and Byr2's three-dimensional structure is unknown. RESULTS: We have solved the 3D structure of the Ras binding domain of Byr2 (Byr2RBD) from Schizosaccharomyces pombe in solution. The structure consists of three alpha helices and a mixed five-stranded beta pleated sheet arranged in the topology betabetaalphabetabetaalphabetaalpha with the first seven canonic secondary structure elements forming a ubiquitin superfold. 15N-(1)H-TROSY-HSQC spectroscopy of the complex of Byr2RBD with Ras*Mg(2+)*GppNHp reveals that the first and second beta strands and the first alpha helix of Byr2 are mainly involved in the protein-protein interaction as observed in other Ras binding domains. Although the putative interaction site of H-Ras from human and Ras1 from S. pombe are identical in sequence, binding to Byr2 leads to small but significant differences in the NMR spectra, indicating a slightly different binding mode. CONCLUSIONS: The ubiquitin superfold appears to be the general structural motif for Ras binding domains even in cases with vanishing sequence identity. However, details of the 3D structure and the interacting interface are different, thereby determining the specifity of the recognition of Ras and Ras-related proteins.  相似文献   

11.
Raf kinase is a key component in regulating the MAPK pathway. B-Raf has been reported as an oncogene and is mutated in 60% of human melanomas. The main focus of Raf regulation studies has been on phosphorylation, dephosphorylation, and scaffolding proteins; however, Raf also has its own auto-regulatory domain. Removal of the N-terminal regulatory domain, initially discovered in the viral Raf oncogene (v-Raf), results in a kinase domain with high basal activity independent of Ras activation. In this report, we show that activating phosphorylations are still required for activity of the truncated C-terminal kinase domain (called 22W). The interaction between the N-terminal regulatory domain and the C-terminal kinase domain is disrupted by activated Ras. Mutations in the Ras binding domain, cysteine-rich domain, or S259A do not affect the inhibition of 22W by the N-terminal domain. When phosphomimetic residues are substituted at the activating sites (DDED) in 22W, this results in a higher basal activity that is no longer inhibited by expression of the N-terminal domain, although binding to the N-terminal domain still occurs. Although the interaction between 22W/DDED and the N-terminal domain may be in a different conformation, the interaction is still disrupted by activated Ras. These data demonstrate that N-terminal domain binding to the kinase domain inhibits the activity of the kinase domain. However, this inhibition is relieved when the C-terminal kinase domain is activated by phosphorylation.  相似文献   

12.
To be fully activated at the plasma membrane, Raf-1 must establish two distinct modes of interactions with Ras, one through its Ras-binding domain and the other through its cysteine-rich domain (CRD). The Ras homologue Rap1A is incapable of activating Raf-1 and even antagonizes Ras-dependent activation of Raf-1. We proposed previously that this property of Rap1A may be attributable to its greatly enhanced interaction with Raf-1 CRD compared to Ras. On the other hand, B-Raf, another Raf family member, is activatable by both Ras and Rap1A. When interactions with Ras and Rap1A were measured, B-Raf CRD did not exhibit the enhanced interaction with Rap1A, suggesting that the strength of interaction at CRDs may account for the differential action of Rap1A on Raf-1 and B-Raf. The importance of the interaction at the CRD is further supported by a domain-shuffling experiment between Raf-1 and B-Raf, which clearly indicated that the nature of CRD determines the specificity of response to Rap1A: Raf-1, whose CRD is replaced by B-Raf CRD, became activatable by Rap1A, whereas B-Raf, whose CRD is replaced by Raf-1 CRD, lost its response to Rap1A. Finally, a B-Raf CRD mutant whose interaction with Rap1A is selectively enhanced was isolated and found to possess the double mutation K252E/M278T. B-Raf carrying this mutation was not activated by Rap1A but retained its response to Ras. These results indicate that the strength of interaction with Ras and Rap1A at its CRD may be a critical determinant of regulation of the Raf kinase activity by the Ras family small GTPases.  相似文献   

13.
The function of the c-Raf-1 zinc finger domain in the activation of the Raf kinase was examined by the creation of variant zinc finger structures. Mutation of Raf Cys 165 and Cys 168 to Ser strongly inhibits the Ras-dependent activation of c-Raf-1 by epidermal growth factor (EGF). Deletion of the Raf zinc finger and replacement with a homologous zinc finger from protein kinase C gamma (PKC gamma) (to give gamma/Raf) also abrogates EGF-induced activation but enables a vigorous phorbol myristate acetate (PMA)-induced activation. PMA activation of gamma/Raf does not require endogenous Ras or PKCs and probably occurs through a PMA-induced recruitment of gamma/Raf to the plasma membrane. The impaired ability of EGF to activate the Raf zinc finger variants in situ is attributable, at least in part, to a major decrement in their binding to Ras-GTP; both Raf zinc finger variants exhibit decreased association with Ras (V12) in situ upon coexpression in COS cells, as well as diminished binding in vitro to immobilized, processed COS recombinant Ras(V12)-GTP. In contrast, Raf binding to unprocessed COS or prokaryotic recombinant Ras-GTP is unaffected by Raf zinc finger mutation. Thus, the Raf zinc finger contributes an important component to the overall binding to Ras-GTP in situ, through an interaction between the zinc finger and an epitope on Ras, distinct from the effector loop, that is present only on prenylated Ras.  相似文献   

14.
Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.  相似文献   

15.
Transformation efficiencies of Ras mutants at residue 61 range over three orders of magnitude, but the in vitro GTPase activity decreases 10-fold for all mutants. We show that Raf impairs the GTPase activity of RasQ61L, suggesting that the Ras/Raf complex differentially modulates transformation. Our crystal structures show that, in transforming mutants, switch II takes part in a network of hydrophobic interactions burying the nucleotide and precatalytic water molecule. Our results suggest that Y32 and a water molecule bridging it to the gamma-phosphate in the wild-type structure play a role in GTP hydrolysis in lieu of the Arg finger in the absence of GAP. The bridging water molecule is absent in the transforming mutants, contributing to the burying of the nucleotide. We propose a mechanism for intrinsic hydrolysis in Raf-bound Ras and elucidate structural features in the Q61 mutants that correlate with their potency to transform cells.  相似文献   

16.
Ras plays an essential role in activation of Raf kinase which is directly responsible for activation of the MEK-ERK kinase pathway. A direct protein-protein interaction between Ras and the N-terminal regulatory domain of Raf is critical for Raf activation. However, association with Ras is not sufficient to activate Raf in vitro, indicating that Ras must activate some other biochemical events leading to activation of Raf. We have observed that RasV12Y32F and RasV12T35S mutants fail to activate Raf, yet retain the ability to interact with Raf. In this report, we showed that RasV12Y32F and RasV12T35S can cooperate with members of the Rho family GTPases to activate Raf while alone the Rho family GTPase is not effective in Raf activation. A dominant negative mutant of Rac or RhoA can block Raf activation by Ras. The effect of Rac or Cdc42 can be substituted by the Pak kinase, which is a direct downstream target of Rac/Cdc42. Furthermore, expression of a kinase inactive mutant of Pak or the N-terminal inhibitory domain of Pak1 can block the effect of Rac or Cdc42. In contrast, Pak appears to play no direct role in relaying the signal from RhoA to Raf, indicating that RhoA utilizes a different mechanism than Rac/Cdc42. Membrane-associated but not cytoplasmic Raf can be activated by Rac or RhoA. Our data support a model by which the Rho family small GTPases play an important role to mediate the activation of Raf by Ras. Ras, at least, has two distinct functions in Raf activation, recruitment of Raf to the plasma membrane by direct binding and stimulation of Raf activating kinases via the Rho family GTPases.  相似文献   

17.
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.  相似文献   

18.
《Biophysical journal》2022,121(19):3616-3629
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.  相似文献   

19.
Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, and ERK and provides spatial and temporal regulation of Ras-dependent ERK cascade signaling. In this report, we identify the heterotetrameric protein kinase, casein kinase 2 (CK2), as a new KSR1-binding partner. Moreover, we find that the KSR1/CK2 interaction is required for KSR1 to maximally facilitate ERK cascade signaling and contributes to the regulation of Raf kinase activity. Binding of the CK2 holoenzyme is constitutive and requires the basic surface region of the KSR1 atypical C1 domain. Loss of CK2 binding does not alter the membrane translocation of KSR1 or its interaction with ERK cascade components; however, disruption of the KSR1/CK2 interaction or inhibition of CK2 activity significantly reduces the growth-factor-induced phosphorylation of C-Raf and B-Raf on the activating serine site in the negative-charge regulatory region (N-region). This decrease in Raf N-region phosphorylation further correlates with impaired Raf, MEK, and ERK activation. These findings identify CK2 as a novel component of the KSR1 scaffolding complex that facilitates ERK cascade signaling by functioning as a Raf family N-Region kinase.  相似文献   

20.
Proteins controlling cellular networks have evolved distinct mechanisms to ensure specificity in protein-protein interactions. Raf kinase inhibitor protein (RKIP) is a multifaceted kinase modulator, but it is not well understood how this small protein (21 kDa) can coordinate its diverse signaling functions. Raf1 and G protein-coupled receptor kinase (GRK) 2 are direct interaction partners of RKIP and thus provide the possibility to untangle the mechanism of its target specificity. Here, we identify RKIP dimer formation as an important mechanistic feature in the target switch from Raf1 to GRK2. Co-immunoprecipitation and cross-linking experiments revealed RKIP dimerization upon phosphorylation of RKIP at serine 153 utilizing purified proteins as well as in cells overexpressing RKIP. A functional phosphomimetic RKIP mutant had a high propensity for dimerization and reproduced the switch from Raf1 to GRK2. RKIP dimerization and GRK2 binding, but not Raf1 interaction, were prevented by a peptide comprising amino acids 127-146 of RKIP, which suggests that this region is critical for dimer formation. Furthermore, a dimeric RKIP mutant displayed a higher affinity to GRK2, but a lower affinity to Raf1. Functional analyses of phosphomimetic as well as dimeric RKIP demonstrated that enhanced dimerization of RKIP translates into decreased Raf1 and increased GRK2 inhibition. The detection of RKIP dimers in a complex with GRK2 in murine hearts implies their physiological relevance. These findings represent a novel mechanistic feature how RKIP can discriminate between its different interaction partners and thus advances our understanding how specific inhibition of kinases can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号