首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dried smears prepared from vitally stained sperm were evaluated as a method of simultaneously determining sperm viability and acrosomal morphology. A combination Fast Green FCF-Eosin B stain was used. The stained smears were examined at × 1, 250 using differential interference contrast microscopy (DIC). For comparison, the percentage of sperm with intact acrosomes was also determined from wet smears using DIC. Acrosomal morphology was not altered by the staining procedure, as the percentage of intact acrosomes was similar whether quantitated from wet or stained smears. Absence of eosinophilic staining in the acrosome was used as an indication of sperm viability. The percentage of sperm with unstained acrosomes was highly correlated with the percentage of intact acrosomes quantitated from stained smears. Thus, vital staining provided an indication of sperm viability comparable to acrosomal integrity, a highly reliable technique. The major advantages of using dried stained smears were more thorough examination of individual sperm without sperm activity interference, simultaneous evidence of sperm viability and morphology, and the opportunity to delay evaluation. In addition, diluting spermatozoa in complex or simple media with or without egg yolk or follicular fluid did not interfere with subsequent staining or acrosomal evaluation.  相似文献   

2.
The acrosome of the stallion spermatozoon was visualized by indirect immunofluorescence with monoclonal antibody (18.6) which recognized an integral acrosomal membrane component. Localization was confirmed by electron microscopy using peroxidase labelled antibody. In fresh semen samples (n = 19), 73.9 +/- 9.1% of the spermatozoa from five fertile stallions displayed a uniform bright fluorescence over their acrosome region. In two semen samples from an infertile stallion only 28% and 35% of spermatozoa showed the same pattern of fluorescence. Spermatozoa from fertile stallions incubated for up to 12 hours in TALP medium maintained motility and exhibited a significant progressive loss of acrosomes as detected by immunofluorescence. Alternatively, a similar loss of acrosomes could be induced with calcium ionophore A23187 over a 90 minute incubation. Ultrastructural observations and incubation with zona-free hamster eggs indicated that only with ionophore treatment was immunofluorescent acrosome loss correlated with a physiological acrosome reaction, while prolonged sperm incubation led to degenerative membrane changes. It was concluded that, if carefully validated, immunofluorescent localization of the acrosome of stallion sperm with monoclonal antibody could be used to monitor the acrosome reaction. Furthermore, definitive acrosome visualization would be valuable in assessing semen quality.  相似文献   

3.
We report here that fluorescein isothiocyanate-conjugated concanavalin A (FITC-ConA) specifically labels the acrosomal region of acrosome-reacted bovine spermatozoa. This labeling is found to be useful in evaluating the acrosome status of bovine spermatozoa. When fresh bovine spermatozoa that had been fixed with 4% formaldehyde, smeared on glass slides and then air-dried were stained by FITC-ConA, weak fluorescence was observed on the acrosomal region, although almost all the spermatozoa appeared to be acrosome-intact. However, when fresh sperm suspensions were incubated with FITC-ConA and then mounted on glass slides, no fluorescence was observed on the acrosomal region. Therefore, in the ensuing experiments, both the fixation and the FITC-ConA staining of spermatozoa were done in suspension. When ethanol-treated spermatozoa, whose outer membrane may be permeabilized, were stained with FITC-ConA, the fluorescence was extensively observed on the inner acrosomal region. This fluorescence was inhibited in the presence of 0.2 M D-mannose, a competitive sugar, suggesting that FITC-ConA binds specifically to glycocomponents on the inner acrosomal membrane. We next tried to stain fresh or frozen-thawed spermatozoa from 3 different bulls that had been treated with the calcium ionophore A23187, which is known to induce acrosome reaction of bovine spermatozoa, with FITC-ConA. A significant correlation between the percentage of ConA-labeled spermatozoa and that of rose bengal stained negative ones at various time points during A23187 incubation was achieved. Furthermore, suitability of dual staining to distinguish between physiological acrosome reaction (acrosome-lost and live) and degenerative acrosomal loss (acrosome-lost and dead) using FITC-ConA and Hoechst bis-benzimide 33258 (H258) supravital stain was also confirmed. From these results, it was concluded that the FITC-ConA labeling procedure is a feasible and reliable method for the assessment of physiological acrosome reaction of bovine spermatozoa.  相似文献   

4.
Previous electron microscopic observations have shown that the acrosome of the sperm of the frog, Xenopus laevis, comprises a membrane-bounded vesicle covering the anterior-most position of the head. We obtained a sperm suspension from the testes and stained it with LysoSensor Green for observation under a confocal laser scanning microscope and found a bright fluorescence reflecting the presence of the acrosomes at the top of the sperm head in about 64% of the sperm, with no deterioration of their capacity to fertilize. About 40% of the sperm with an acrosome underwent an acrosome reaction in response to Ca(2+) ionophore A23187, as evidenced by a loss of LysoSensor Green stainability, accompanied by breakdown of the acrosomal vesicle. About 53% of the sperm bound to isolated vitelline envelopes underwent an acrosome reaction, whereas both jelly water and solubilized vitelline envelopes weakly induced an acrosome reaction. When the sperm were treated with an oviductal extract obtained from the pars recta, but not the pars convoluta region, about 40% of the sperm with acrosomes underwent an acrosome reaction. The substance containing acrosome reaction-inducing activity in the pars recta extract seemed to be a heat-unstable substance with a molecular weight of greater than 10 kDa. The activity was not inhibited by protease inhibitors but required extracellular Ca(2+) ions. These results indicate that the acrosome reaction occurs on the vitelline envelopes in response to the substance deposited from the pars recta during the passage of the oocytes through the oviduct.  相似文献   

5.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Calcium flux is required for the mammalian sperm acrosome reaction, an exocytotic event triggered by egg binding, which results in a dramatic rise in sperm intracellular calcium. Calcium-dependent membrane fusion results in the release of enzymes that facilitate sperm penetration through the zona pellucida during fertilization. We have characterized inositol 1,4,5-trisphosphate (IP3)-gated calcium channels and upstream components of the phosphoinositide signaling system in mammalian sperm. Peptide antibodies colocalized G alpha q/11 and the beta 1 isoform of phospholipase C (PLC beta 1) to the anterior acrosomal region of mouse sperm. Western blotting using a polyclonal antibody directed against purified brain IP3 receptor (IP3R) identified a specific 260 kD band in 1% Triton X-100 extracts of rat, hamster, mouse and dog sperm. In each species, IP3R immunostaining localized to the acrosome cap. Scatchard analysis of [3H]IP3 binding to rat sperm sonicates revealed a curvilinear plot with high affinity (Kd = 26 nM, Bmax = 30 pmol/mg) and low affinity (Kd = 1.6 microM, Bmax = 550 pmol/mg) binding sites, reflecting among the highest receptor densities in mammalian tissue. Immunoelectron microscopy confirmed the acrosomal localization in rat sperm. The IP3R fractionated with acrosomes by discontinuous sucrose gradient centrifugation and was enriched in the medium of acrosome- reacted sperm. ATP-dependent 45Ca2+ loading of digitonin permeabilized rat sperm was decreased by 45% in the presence of 10 microM IP3. The IP3-mediated release of calcium was blocked by heparin. Thapsigargin, a sequiterpene lactone inhibitor of the microsomal Ca(2+)-ATPase, stimulated the acrosome reaction of mouse sperm to the same extent as the Ca2+ ionophore, A23187. The failure of caffeine and ryanodine to affect calcium accumulation suggested that thapsigargin acted through an IP3-sensitive store. The presence of G alpha q/11, PLC beta 1 and a functional IP3R in the anterior acrosomal region of mammalian sperm, as well as thapsigargin''s induction of the acrosome reaction, implicate IP3-gated calcium release in the mammalian acrosome reaction.  相似文献   

7.
The localization of ubiquitin (UB) signals in the acrosomes of rat spermiogenic cells was investigated by immunoelectron microscopy using two anti-UB antibodies: UB1, reacting with ubiquitinated proteins and free UB; and FK1, recognizing polyubiquitinated proteins but not monoubiquitinated proteins or free UB. Labeling of UB by UB1 (UB1 signal) was detected in the acrosomes at any stage of differentiation. In step 1 spermatids, UB1 signals were detected on the cytoplasmic surface and in the matrix of transport vesicles located between the trans-Golgi network and the acrosome. Weak signals were detected in acrosomal granules within acrosome vesicles that had not yet attached to the nucleus. In step 4-5 spermatids, the acrosome vesicles had enlarged and attached to the nucleus. Strong gold labeling was noted in a narrow space between the outer acrosomal membrane and the developing acrosomal granule, where a dense fibrous material was observed on routine electron microscopy, whereas the acrosomal granule was weakly stained by UB1 antibody. In step 6-8 spermatids, UB1 signals were detected in the fibrous material that expanded laterally to form a narrow electronless dense zone between the acrosomal granule and the outer acrosomal membrane. Labeling in the acrosomal granule increased. In step 9-11 spermatids, UB1 signals were confined to the narrow zone from the tip of the head to the periphery of the ventral fin. The matrix of the acrosome was weakly stained. In epididymal sperm, UB1 labeling in the acrosome decreased without any pretreatment, whereas staining was noted in a spot in the neck region and in the dorsal fin after trypsin digestion. On the other hand, the staining pattern with FK1 was quite different from that with UB1. The trans-Golgi network was weakly stained but the cis-Golgi network was strongly stained. The dense fibrous material just beneath the outer membrane was never stained with FK1. The results suggest that UB on the surface of transport vesicles is involved in anterograde transport from the Golgi apparatus to the acrosome. The physiological role of UB in acrosomes is not clear. Two candidates for monoubiquitinated proteins in the acrosome, which have a UB-interacting motif, were found by cyber screening.  相似文献   

8.
In the mouse and several other species, including man, capacitated acrosome-intact spermatozoa interact with natural [soluble zona pellucida (ZP) and progesterone (P4)] and synthetic [neoglycoproteins (ngps) and calcium (Ca(2+)) ionophore] agonists, prior to the initiation of a Ca(2+)-dependent signal transduction cascade. The net result is the fusion of the sperm plasma membrane overlying the outer acrosomal membrane at multiple sites and exocytosis of acrosomal contents [i.e., induction of the acrosome reaction (AR)]. This step is believed to be a prerequisite that enables the acrosome-reacted spermatozoon to penetrate the ZP and fertilize the egg. Although the rat is one of the most commonly used laboratory animals, very little is known about the chemical nature of agonists that induce the AR in this species. The lack of this information is primarily due to the fact that the rat sperm acrosome is a relatively thin structure. Thus, it is difficult to assess the status of the sperm acrosome in this species. In this report, we describe the use of a Coomassie brilliant blue dye staining procedure to assess the status of the rat sperm acrosome by light microscopy. The procedure is highly reproducible and has allowed us to determine the effects of carbohydrate (ngps and mouse ZP) and noncarbohydrate (P4 and Ca(2+) ionophore) agonists on capacitated spermatozoa. In addition, we have used a pharmacological approach to examine the functional significance of calmodulin (CaM), a Ca(2+)-binding protein, in induction of the AR in spermatozoa. Data presented in this report demonstrate that several ngps, solubilized mZP, P4, and Ca(2+) ionophores induce the AR in rat spermatozoa. Furthermore, we demonstrate that, whereas CaM antagonists blocked P4-induced AR, most of the inhibitors used had no significant effect on the Ca(2+) ionophore-induced (nonphysiological) AR.  相似文献   

9.
The present study investigates whether a 5 hour capacitation period modifies the ability of human spermatozoa to undergo induced acrosomal loss. Human sperm acrosomal loss was induced by treatment with either the calcium ionophore A23187, low concentrations of the phospholipid dilauroylphosphatidylcholine (PC12), or 2 hours incubation in conditioned medium prepared from human cumulus cells (CM/CC). The use of a dual staining method (FITC-ConA and Hoechst 33258) for simultaneous assessment of acrosomal status and viability demonstrated that induction of acrosomal loss with calcium ionophore was not dependent on a capacitation period. A short (5 hour) incubation period was not sufficient to induce acrosomal loss with CM/CC above spontaneous acrosome reaction rates in medium alone. A significant capacitation-dependent increase (P < 0.05) in acrosomal loss was observed when human spermatozoa were incubated with PC12. Induction of acrosomal loss of capacitated human spermatozoa with PC12 therefore provides a simple assay for the simultaneous assessment of human sperm capacitation and the acrosome reaction in vitro.  相似文献   

10.
A simple dual stain procedure (DS) for simultaneously determining sperm viability and acrosomal status is described. The DS includes the use of the vital stain trypan blue to detect live and dead spermatozoa and Giemsa to detect the presence or absence of an acrosome. For staining, spermatozoa are washed, incubated with trypan blue, washed, dried onto slides, and subjected to Giemsa. Dead spermatozoa stain blue in the postacrosomal region while live spermatozoa remain unstained. The acrosome stains light purple–dark pink while acrosome-free sperm remain unstained. This staining pattern enables differentiation of spermatozoa which have undergone a true acrosome reaction (TAR) from those which have undergone a false acrosome reaction (FAR). Incubation of bull, boar, ram, and stallion spermatozoa for 60 minutes at 37°C in the presence of calcium ionophore A23187 increased the proportion of spermatozoa undergoing a TAR in all species except the stallion. Incubation of bull spermatozoa for up to 24 hours at 37°C resulted in a decrease over time in the percentage of live acrosome-intact spermatozoa and a simultaneous increase in the percentage of spermatozoa categorized as having undergone a TAR and FAR. The DS could be a useful technique in evaluating sperm viability and acrosomal status in fertilization and clinical studies.  相似文献   

11.
Proteins implicated in the "SNARE hypothesis" for membrane fusion have been characterized in the acrosome of several mammalian species, and a functional role for these proteins during the acrosome reaction has been proposed. We have investigated the presence of SNAREs in equine sperm, using semen samples obtained from stallions with varying fertility. Immunocytochemical analysis revealed that members of different SNARE families can be detected on the acrosome of equine sperm, notably in the acrosomal cap and equatorial segment. These proteins include the t-SNARE syntaxin, the v-SNARE synaptobrevin/VAMP, the calcium sensor synaptotagmin, and the ATPase NSF. Also present is caveolin-1, a component of lipid rafts. Stallions with fertility problems presented the worst quality of sperm and acrosomal membrane, and had less sperm cells stained positively for SNAREs and caveolin-1, than sperm from fertile donors (p < 0.001). Ubiquitin surface staining was also performed and it seemed to inversely correlate with stallion fertility, supporting data obtained with the negative staining technique. A male-related problem was confirmed when mares that had failed to impregnate with samples from an infertile stallion were successfully inseminated with sperm from a fertile donor. Furthermore NSF, synaptotagmin and caveolin-1 staining seemed to be useful in predicting stallion fertility, i.e. significantly more sperm cells stained positively for these proteins in samples from fertile males. Although these results need to be expanded on a larger scale, they suggest that acrosomal and surface staining of equine sperm with novel probes may constitute useful tools in predicting stallion fertility.  相似文献   

12.
In this study, we investigated the functions of PH‐20 and acrosin during the interaction of macaque sperm with the zona pellucida. Both of these sperm enzymes have been reported to be present on the inner acrosomal membrane of acrosome reacted sperm, and have been suggested to play a role during secondary sperm‐zona binding in other species. Anti‐macaque PH‐20 IgG, anti‐pig acrosin IgG and soybean trypsin inhibitor (SBTI) were used as probes for immunolocalization of the two proteins at the ultrastructural level, and as reagents for blocking sperm penetration of the macaque zona pellucida in vitro. As a control, we performed similar studies with antibodies to CD‐46, which is also located on the inner acrosomal membrane, but has no known function in sperm‐zona pellucida interaction. After labeling with anti‐acrosin IgG, gold label was not present on the sperm surface before the acrosome reaction, but was detected over the entire head of sperm that were induced to acrosome react with calcium ionophore A23187. In contrast, when sperm were induced to acrosome react by binding to intact zona pellucida, acrosin was present in the acrosomal shroud but not on the inner acrosomal membrane. Similar results were obtained when SBTI was used as a probe for enzyme localization. PH‐20 and CD‐46 were demonstrated on the inner acrosomal membrane of sperm induced to acrosome react by ionophore treatment and by zona binding. Neither anti‐acrosin IgG nor anti‐CD‐46 IgG affected sperm penetration of the zona at concentrations up to 300 μg/ml, but zona penetration was blocked completely when anti‐PH‐20 IgG (100 μg/ml) was present during sperm‐oocyte interaction. Ultrastructural observations of oocytes incubated with anti‐PH‐20 IgG showed that acrosomal shrouds were present on the zona surface but no sperm had begun to penetrate into the zona substance. We conclude that anti‐PH‐20 IgG prevented sperm penetration of the macaque zona pellucida by interference with secondary sperm‐zona binding, rather than primary sperm‐zona binding or the zona‐induced acrosome reaction. Acrosin was not detected on the inner acrosomal membrane of sperm that are induced to acrosome react after zona binding, and acrosin does not appear to be critical for sperm penetration of the macaque zona pellucida. Mol. Reprod. Dev. 53:350–362, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Spermatozoa of the hagfishes Eptatretus burgeri and Eptatretus stouti, caught in the sea near Japan and North America, respectively, were found to undergo the acrosome reaction, which resulted in the formation of an acrosomal process with a filamentous core. The acrosomal region of spermatozoa of E. stouti exhibited immunofluorescent labeling using an actin antibody. The midpiece also labeled with the antibody. The acrosomal region showed a similar labeling pattern when sperm were probed with tetramethylrhodamine isothyocyanate (TRITC)-phalloidin; the midpiece did not label. Following induction of the acrosome reaction with the calcium (Ca2+) ionophore ionomycin, TRITC-phalloidin labeling was more intense in the acrosomal region, suggesting that the polymerization of actin occurs during formation of the acrosomal process, as seen in many invertebrates. The potential for sperm to undergo acrosomal exocytosis was already acquired by late spermatids. During acrosomal exocytosis, the outer acrosomal membrane and the overlying plasma membrane disappeared and were replaced by an array of vesicles; these resembled an early stage of the acrosome reaction in spermatozoa of higher vertebrates in which no formation of an acrosomal process occurs. It is phylogenetically interesting that such phenomena occur in spermatozoa of hagfish, a primitive vertebrate positioning between invertebrates and high vertebrates.  相似文献   

14.
Although its exact role in fertilization is unknown, the acrosome is a very important, exocytotic organelle overlying the anterior aspect of sperm from many species. Structurally and functionally, the acrosome can be considered to consist of soluble and particulate compartments. One component of the particulate acrosomal matrix is the zona pellucida-binding protein sp56. Our demonstration that this protein is within the acrosomal matrix and not on the sperm plasma membrane has led us to reexamine the events of acrosomal exocytosis and the role of the sperm acrosomal matrix in the fertilization process. To visualize the soluble compartment, we have utilized sperm from transgenic mice that carry soluble green fluorescent protein (GFP) in their acrosomes and, as a means to assess the exposure of acrosomal matrix components, we have tested the ability of these sperm to bind beads coated with antibodies to sp56. The loss of GFP from the acrosomes and the binding of the beads by the sperm undergoing capacitation serve as indicators of distinct stages of acrosomal exocytosis, allowing us to define intermediates of acrosomal exocytosis that occur during the course of sperm capacitation. These experiments demonstrate that the exposure and release of acrosomal proteins during spontaneous acrosomal exocytosis is not synchronous but is regulated during capacitation. Furthermore, acrosomal exocytosis under these conditions required calcium in the medium. On the basis of these findings, we propose an alternative model for acrosomal exocytosis that considers a role for these intermediates of exocytosis during capacitation and sperm-ZP interactions.  相似文献   

15.
Fluorescein-labeled GB 24, a mouse monoclonal antibody, was evaluated as an acrosomal dye for boar spermatozoa that had previously been stained with propidium iodide (PI) to assess sperm viability. A specific sperm-staining pattern with fluorescein-labeled GB 24 was shown to be associated with acrosome reaction on freshly ejaculated sperm when fixed with acetone or induced with ionophore A 23187, whereas the presence of PI staining was typical of dying spermatozoa. The GB 24-PI procedure was as accurate as the glutaraldehyde method in assessing acrosomal presence or absence on freshly ejaculated spermatozoa when spontaneous or A 23187-induced acrosomal reactions were considered. Approximately half of A 23187-induced spermatozoa with acrosomal loss did not exhibit a PI fluorescence; these were potentially viable acrosome-reacted spermatozoa. On semen diluted in a boar sperm-specific diluent (BTS-A) and stored, percentages of spermatozoa with nonintact acrosome from glutaraldehyde and GB 24-PI were not significantly different. Conversely, data from GB 24-PI was significantly lower than those from glutaraldehyde when semen were undiluted. This suggested that spermatozoa with reacted acrosome gradually lost their ability to bind with GB 24. Providing unequivocal and rapid scoring of acrosome-reacted spermatozoa, the GB 24-PI procedure may be a valuable tool in the evaluation of the acrosomal status of porcine fresh spermatozoa.  相似文献   

16.
A system has been developed for inducing a calcium-dependent acrosome reaction in ram spermatozoa in vitro using the calcium ionophore A23187. The resultant reaction is accompanied by release of the acrosomal enzymes hyaluronidase and acrosin, but there is no release of the cytoplasmic enzyme glucose 6-phosphate isomerase. In any given cell, the visible acrosome reaction apparently takes place rapidly, but there is a variable delay before the reaction occurs. Under optimum conditions, about 90% of treated spermatozoa show an acrosome reaction within one hour. Preincubation of the spermatozoa with the proteinase inhibitors p-amino-benzamidine or p-nitrophenylguanidinobenzoate allows two stages of the reaction to be distinguished ultrastructurally, a membrane fusion stage followed by a dispersal of the acrosomal matrix. In the presence of the inhibitors, the first stage is delayed but is completed within 1 hour, whereas the second remains largely incomplete. In the presence of calcium, ionophore concentrations which induce an acrosome reaction abolish sperm motility rapidly and completely. However, by adding serum albumin shortly after addition of ionophore, motility can be preserved while the acrosome reaction occurs as usual; the motility pattern observed under these conditions is of the “whip-lash” or “activated” type. Although the motile ionophore-treated spermatozoa were unsuccessful at penetrating normal mature sheep oocytes in vitro, they were able to penetrate zona-free oocytes, after which swelling and decondensation of the sperm head took place.  相似文献   

17.
18.
The presence and role of the c-kit proto-oncogene protein was investigated in the mature sperm of the human. A polyclonal antibody against the c-kit peptide was used to perform immunohistochemical (IHC) staining, electron microscopy (EM) studies, and Western blot analysis. The acrosomal region of fresh sperm specifically stained with the antibody. No acrosomal staining or staining limited to the equatorial region was noted in the acrosome-reacted (AR) sperm. EM studies demonstrated immunogold label on the plasma membrane (PM) of the acrosome, and confirmed the lack of binding following the acrosome reaction. A 150 kDa band was detected by Western blot analysis. This protein was released from the sperm surface during sperm capacitation and the acrosome reaction. Antibody against the c-kit receptor significantly inhibited the acrosome reaction and increased sperm agglutination, but did not significantly inhibit sperm motility. These results suggest that the c-kit receptor protein is present in mature human sperm and is released during capacitation and/or the acrosome reaction. The assessment of the c-kit receptor may also be a useful assay for sperm function in male infertility.  相似文献   

19.
The acrosome of Platycleis albopunctata (Orthoptera: Tettigoniidae) is relatively large and complex, consisting of an apical vesicle and two large wing-like extensions that give the spermatozoon the shape of an arrow. The wings have actin microfilaments and microtubules and are covered with a noticeable extracellular material. Actin filaments are present in the acrosome when it first appears in spermatid stages. The acrosome and the acrosomal attachment to the nucleus are more resistant than other structures to the reducing agents DTT and SDS. At the end of spermiogenesis, groups of spermatozoa juxtapose their sperm heads and become joined to form a spermatodesm encircled by an amorphous material. Treatment with the ionophore A23187 rapidly disrupted acrosomes of the free gametes, but acrosomes from spermatozoa contained in the spermatodesm were not disassembled. Packaging of sperm in a spermatodesm appears to protect the acrosome.  相似文献   

20.
In order to study the acrosome reaction in boar, spermatozoa were incubated in a calcium-containing medium in the presence of the calcium ionophore A23187. The time course of the acrosome reaction was assessed by phase-contrast microscopy and correlated with the movement characteristics of the spermatozoa determined by means of multiple-exposure photography (MEP). Different stages of the acrosome reaction could be observed by indirect immunofluorescence using an antibody fraction raised in rabbits against the isolated outer acrosomal membrane (OAM). At the start of the acrosome reaction, a bright fluorescence located exclusively at the acrosomal cap of the sperm head could be observed, whereas after 60-120 min, the fluorescence vanished, indicating the complete loss of the OAM. However, to gain more insight into the stages of the plasma membrane and OAM during the acrosome reaction, immunoelectron-microscopical studies were performed using anti-OAM antibodies detected by the protein-A gold method. Ultrathin sections and total preparations in combination with transmission electron microscopy (TEM) confirmed, that boar spermatozoa start their acrosome reaction by a vesiculation of the plasma membrane, thus exposing the heavily labelled OAM, which is then lost as sheets or large vesicles. The newly exposed inner acrosomal membrane did not show any labelling with gold, thereby indicating clear differences in the antigenicity of both acrosomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号