首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradykinin is a peptide consisting of nine amino acids. It is a member of the kinin family, a class of molecules sometimes considered to be locally acting hormones. Bradykinin acts through cell surface receptors to elicit a series of biological responses, many of which have been well characterized at the whole organ or body level. However, little is known about the bradykinin receptor itself or its mechanisms of signal transduction, its function and its tissue distribution. Increasing evidence suggests that bradykinin is a member of a group of locally produced peptides which may act in a paracrine fashion as microenvironmental modulators of cell proliferation. Evidence for this derives from studies of the interaction between bradykinin and its receptor, receptor-effector coupling systems and in vitro studies of the biological effects of bradykinin. These areas, together with questions concerning the nature and number of different types of bradykinin receptors, form the main bulk of current interest in bradykinin research and are the subject of this review. The ability of bradykinin to synergize with other growth regulating ligands will also be considered.  相似文献   

2.
Cytokines are important regulators of hemopoiesis which exert their actions by binding to specific, high affinity, cell surface receptors. In the past several years, molecular cloning of these receptors has revealed a new superfamily referred to as the hemopoietic growth factor receptors. Members of this family are defined by a 200 amino acid conserved domain; however, it has become increasingly apparent that another characteristic of these receptors is the shared usage of a common signalling subunit among subgroups in this family. The shared signalling component explains the functional redundancy of many cytokines; however, the mechanism by which these receptors transduce a signal across the membrane is not yet clear. Studies into cytokine action have shown that many of the events that occur in response to ligand stimulation are similar to those observed for the better characterized intrinsic tyrosine kinase receptors. Thus, although the cytokine receptors do not possess intrinsic tyrosine kinase activity, these observations have led to a model of cytokine signal transduction adapted from the signalling mechanisms described for the tyrosine kinase receptors.  相似文献   

3.
4.
Cytokine receptors and signal transduction.   总被引:16,自引:0,他引:16  
T Taga  T Kishimoto 《FASEB journal》1992,6(15):3387-3396
Most of the recently cloned cytokine receptors that operate in the immune and hematopoietic systems contain no tyrosine kinase domains in their cytoplasmic regions, unlike the family of growth factor receptors defined earlier. However, they can be assigned to several new types of receptor families based on structural similarities among them. It is characteristic of these receptors that many of them require a receptor-associated molecule in order to achieve high-affinity ligand binding and/or transmission of cytoplasmic signals. Receptor-associated molecules have been found that transduce cytoplasmic signals and are shared by different cytokine receptors. Phosphorylation of the receptors and of various cytoplasmic proteins after ligand stimulation seems to be a common event in cytokine systems. Insight into the pleiotropic and redundant nature of cytokine action is provided by the discovery of several new cytokine receptor families and of shared signal transduction molecules and by the idea that several cytoplasmic kinases may be able to functionally substitute for one another in transmitting cytokine signals.  相似文献   

5.
肾上腺髓质素受体及其信号转导   总被引:3,自引:0,他引:3  
肾上腺髓质素(Adm)是新近发现的一种生物活性多肽,在体内有着广泛的分布,参与机体多种生理功能的调节。Adm可与两种受体结合:CGRP受体和Adm特异受体。Adm与体结合后,通过cAMP-PKA等信号转导通路发挥舒长血管、降低血压、利尿利钠和抑制细胞增殖等作用。  相似文献   

6.
血管紧张素受体及其信号转导   总被引:7,自引:0,他引:7  
由于高选择性拮抗剂和分子生物学技术的应用,使得血管紧张素受体的研究有了很大 进展。目前认为血管紧张素受体至少可以分为AT1R和AT2R两型,本文予以概要介绍。  相似文献   

7.
高度灵敏的嗅觉系统,能够帮助昆虫准确识别环境中不同来源的挥发性化合物,在昆虫觅食、交配和产卵等生命活动过程中起着至关重要的作用.通过感觉神经元膜上数量巨大且种类繁多的嗅觉受体,昆虫可以识别不同的气味物质,进而调控其行为.已知的昆虫嗅觉受体主要有三种,离子型受体、气味受体和响应二氧化碳及信息素的味觉受体.目前嗅觉受体的分子结构及其介导的信号转导机制仍然没有得到完整的阐释,嗅觉受体配体的鉴定工作也还任重道远.本综述就昆虫嗅觉受体的结构、进化、功能表征方法以及气味受体介导信号转导的机制等方面的研究进展进行了综述,以期对研究昆虫嗅觉编码和调控,以及昆虫与植物间互作提供一定的理论参考.  相似文献   

8.
9.
10.
11.
12.
G protein-coupled receptors (GPCRs) are seven-transmembrane proteins (7-TM) that transduce extracellular signals into cellular physiological responses through the activation of heterotrimeric guanine nucleotide binding proteins (alpha beta gamma subunits). Their general properties are remarkably well conserved during evolution. Despite this general resemblance, a large variety of different signals are mediated via this category of receptors. Several GPCR-(sub)families have an ancient origin that is situated before the divergence of Protostomian and Deuterostomian animals. Nevertheless, an enormous diversification has occurred since then. The availability of novel sequence information is growing very rapidly as a result of molecular cloning experiments and of metazoan genome (Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens) and EST (expressed sequence tags) sequencing projects. The Drosophila Genome Sequencing Project will certainly have an important impact on insect signal transduction and receptor research. In parallel, convenient expression systems and functional assay procedures will be needed to investigate insect receptor properties and to monitor the effects of natural and artificial ligands. The study of the evolutionary aspects of G protein-coupled receptors and of their signaling pathways will probably reveal insect-specific features. More insight into these features may result in novel methods and practical applications. Arch.  相似文献   

13.
14.
Multiple mechanisms of serotonergic signal transduction   总被引:7,自引:0,他引:7  
B L Roth  D M Chuang 《Life sciences》1987,41(9):1051-1064
In this article we review serotonergic signal transduction mechanisms in the central and peripheral nervous systems and in a variety of target organs. The various classes of pharmacologically defined serotonergic receptors are coupled to three major effector systems: (1) adenylate cyclase; (2) phospholipase C mediated phosphoinositide (PI) hydrolysis and (3) ion channels (K+ and Ca++). Long term occupancy of serotonergic receptors also appears to induce alterations in mRNA and protein synthesis. For all three types of signal transduction there is evidence accumulating which suggests the involvement of guanine nucleotide regulatory proteins. Recent findings suggest that the distinct types of pharmacologically defined serotonergic receptors (5HT1A, 5HT1B, 5HT1c, 5HT2) may be coupled to one or more signal transduction systems. Thus, 5HT1 receptors may both activate and inhibit adenylate cyclase and increase K+-ion conductance in the hippocampus. 5HT2 receptors which activate PI hydrolysis in the brain, both open voltage-gated calcium channels and activate PI metabolism in certain smooth muscle preparations. Thus, each class of serotonergic receptor may be linked to one or more distinct biochemical transduction mechanisms. The possibility is raised that selective agonists and antagonists might be developed which have specific effects on a particular receptor-linked effector system.  相似文献   

15.
Bi-directional signal transduction by integrin receptors   总被引:7,自引:0,他引:7  
The integrin family of cell surface glycoproteins functions primarily as receptors for extracellular matrix ligands. There are now many well characterized integrin-ligand interactions which are known to influence many aspects of cell behaviour including cell morphology, cell adhesion, cell migration as well as cellular proliferation and differentiation. However, in fulfilling these functions, integrins are not simple adhesion receptors that physically mediate connections across the plasma membrane. Rather, integrin function itself is highly regulated, largely through the formation of specific associations with both structural and regulatory components within cells. It is these intracellular interactions which allow integrin function to effect many biochemical signalling pathways and therefore to impinge upon complex cellular activities. Recently, much research has focused on elucidating the molecular mechanisms which control integrin function and the molecular processes which transduce integrin-mediated signalling events. In this review, we discuss progress in the field of integrin signal transduction including, where applicable, potential therapeutic applications arising from the research.  相似文献   

16.
Somogyi GT  de Groat WC 《Life sciences》1999,64(6-7):411-418
Presynaptic M1 muscarinic receptors on parasympathetic nerve terminals in rat urinary bladder strips are involved in an autofacilitatory mechanism that markedly enhances acetylcholine release during continuous electrical field stimulation. The facilitatory muscarinic mechanism is dependent upon a PKC mediated second messenger pathway and influx of extracellular Ca2+ into the parasympathetic nerve terminals via L and N-type Ca2+ channels. Prejunctional muscarinic facilitation has also been detected in human bladders. The muscarinic facilitatory mechanism is upregulated in hyperactive bladders from chronic spinal cord transected rats; and the facilitation in these preparations is primarily mediated by M3 muscarinic receptors. Presynaptic muscarinic receptors represent a new target for pharmacological treatment of bladder hyperactivity. If presynaptic facilitation is restricted to the bladder and not present in other tissues then drugs acting at this site might be expected to exhibit uroselectivity.  相似文献   

17.
The molecular cloning of new neuroactive growth factors and their receptors has greatly enhanced our understanding of important interactions among receptors and singnaling molecules. These studies have begun to illuminate some of the mechanisms that allow for specificity in neuronal signaling. Model cell systems, such as the PC-12 pheochromocytoma cell line, express receptors for these different neurotirophic factors, leading to comparisons of signaling pathways for these factors. Upon binding their ligands, these receptors undergo phosphorylation on tyrosine residues, which directs their interaction with signaling proteins containing src homology (SH2) domains, sequences that mediate associations with tyrosine-phosphorylated proteins. These SH2 proteins translate the tyrosine kinase activity of receptors into downstream events that result in the specific cellular response. Investigations such as these have revealed that molecular specificity in signaling pathways may arise from combinatorial diversity in interactions between receptors and key regulatory proteins.  相似文献   

18.
Signal transduction is used by plants to coordinate their development and to sense and respond to fluctuations in their surroundings. Of prime importance is the ability to defend against pathogens and other environmental hazards such as cold temperatures, drought or wounding. Many transduction pathways are now characterized and the underlying genes are known. This suggests an obvious question—can we engineer signal transduction mechanisms for plant improvement? We address this question by presenting a rationale for an engineering approach and by discussing results from recent attempts to apply this approach. Calmodulin-like domain protein kinase (CDPK) and mitogen-activated protein kinase (MAPK) pathways are used as primary examples. New technology that will aid these efforts is also covered.  相似文献   

19.
20.
The plasticity of the central nervous system helps form the basis for the neurobiology of learning and memory. Long-term potentiation (LTP) is the main form of synaptic plasticity, reflecting the activity level of the synaptic information storage process, and provides a good model to study the underlying mechanisms of learning and memory. The glutamate receptor-mediated signal pathway plays a key role in the induction and maintenance of LTP, and hence the regulation of learning and memory. The progress in the understanding of the glutamate receptors and related signal transduction systems in learning and memory research are reviewed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号