首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of the rapidly developing hierarchy of controls affecting vascular development in placenta is required to understand how the growth factors and their receptor-mediated signals actually produce vessels. At the cell biological level, these events clearly require stable interactions between the cells, and cells with the surrounding ECM. The objective of the study was to understand the role of integrins and ECM on the expression and secretion of angiogenin in placentas and from trophoblasts in culture. Functionally active term placental explant culture and trophoblast cultures were used to demonstrate the differential secretion profile of angiogenin and real-time quantitative RT-PCR to demonstrate the mRNA expression in the presence or absence of ECM proteins. In this study, a significant increase in expression and secretion of angiogenin occurred in the presence of vitronectin (VN) and fibronectin (FN). Using antibody-blocking experiments it was also demonstrated that the angiogenin secretion is mediated by placental integrins, alpha(V)beta3 and alpha5beta1. In addition, exposure to hypoxic conditions resulted in diminished angiogenin secretion in the presence of both ECMs suggesting that angiogenin expression in the presence of ECM is modulated by local O2 concentration. In conclusion, this study provides evidence for the regulatory role of ECM and integrins on the mRNA expression and secretion of angiogenin in human placenta. ECMs may have a pivotal role in enhancing secretion of this peptide necessary for placental angiogenesis and provides the impetus as additional targets for the control of angiogenesis in pathological pregnancy.  相似文献   

2.
Interaction between endometrial stromal cells and extracellular matrix (ECM) components has a crucial role in the development of endometriosis. Endometrial stromal cells attach to the mesothelial surface of peritoneum by means of integrins during their initial implantation and growth in endometriosis. Similarly, interaction between integrin and the extracellular matrix is also crucial for the remodeling of the endometrium during early pregnancy. We hypothesized that adhesion of endometrial stromal cells to the extracellular matrix could suppress the immunologic reaction to implanting endometrial cells by inducing the expression of Fas ligand (FasL), a mediator of the apoptotic pathway. Western blot analysis of human endometrial stromal cells plated onto fibronectin, laminin, and collagen IV revealed higher levels of FasL protein expression compared with endometrial stromal cells that plated to BSA-coated plates (control). Immunocytochemistry results from endometrial stromal cells plated to extracellular matrix proteins demonstrated a similar up-regulation of FasL expression. Eutopic endometrial stromal cells from women with endometriosis demonstrated higher FasL expression on control plates and those coated with extracellular matrix proteins compared with those from women without endometriosis. Disruption of actin cytoskeleton in endometrial stromal cells by treatment with cytochalasin D blocked the increase of FasL protein expression that occurred in response to adhesion to the extracellular matrix. These results suggest that attachment of endometrial stromal cells during retrograde menstruation to a new environment such as peritoneum with increased expression of laminin, fibronectin, and collagen IV could lead to an increase in FasL expression. Induction of FasL expression by adhesion of endometrial stromal cells to the extracellular matrix may take part in the development of a relative immunotolerance by inducing apoptosis of cytotoxic T lymphocytes, which will allow further development of ectopic implants.  相似文献   

3.
L Guo  Q C Yu    E Fuchs 《The EMBO journal》1993,12(3):973-986
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. Synthesized by cells of the dermal component of skin, KGF's potent mitogenic activity is on the epidermal component, which harbors the receptors for this factor. To explore the possible role of KGF in mesenchymal-epithelial interactions in skin, we used a human keratin 14 promoter to target expression of human KGF cDNA to the stratified squamous epithelia of transgenic mice. Mice expressing KGF in their epidermis typically appeared frail and weak, and often had grossly wrinkled skin. These mice exhibited a gross increase in epidermal thickness accompanied by alterations in epidermal growth and differentiation. Most remarkably, animals displayed several striking and unexpected changes, including a marked suppression of hair follicle morphogenesis and suppression of adipogenesis. With age, some animals developed gross transformations in the tongue epithelium and in epidermis. In addition, they exhibited elevated salivation and their salivary glands showed signs of altered differentiation. Collectively, our findings provide new and important insights into the roles of KGF, implicating this potent growth factor in eliciting global effects not only on growth, but also on development and differentiation, of skin and other tissues. In particular, KGF seems to interfere with signalling of some mesenchymal-epithelial interactions.  相似文献   

4.
The extracellular matrix is a complex system that regulates cell function within a tissue. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is bound to the matrix, and previous studies show that a lack of EC-SOD results in increased cardiac injury, fibrosis, and loss of cardiac function. This study tests the hypothesis that EC-SOD protects against cardiac fibrosis mechanistically by limiting oxidative stress and oxidant-induced shedding of syndecan-1 in the extracellular matrix. Wild-type and EC-SOD null mice were treated with a single dose of doxorubicin, 15 mg/kg, and evaluated on day 15. Serum and left-ventricle tissue were collected for biochemical assays, including Western blot, mRNA expression, and immunohistochemical staining for syndecan-1. The loss of EC-SOD and doxorubicin-induced oxidative injury led to increases in shed syndecan-1 in the serum, which originates from the endothelium of the vasculature. The shed syndecan-1 ectodomain induces proliferation of primary mouse cardiac fibroblasts. This study suggests that one mechanism by which EC-SOD protects the heart against cardiac fibrosis is the prevention of oxidative shedding of cardiovascular syndecan-1 and its subsequent induction of fibroblast proliferation. This study provides potential new targets for understanding and altering fibrosis progression in the heart.  相似文献   

5.
Cell spreading and proliferation are tightly coupled in anchorage-dependent cells. While adhesion-dependent proliferation signals require an intact actin cytoskeleton, and some of these signals such as ERK activation have been characterized, the role of myosin in spreading and cell cycle progression under different extracellular matrix (ECM) conditions is not known. Studies presented here examine changes in myosin activity in freshly isolated hepatocytes under ECM conditions that promote either proliferation (high fibronectin density) or growth arrest (low fibronectin density). Three different measures were obtained and related to both spreading and cell cycle progression: myosin protein levels and association with cytoskeleton, myosin light chain phosphorylation, and its ATPase activity. During the first 48 h in culture, corresponding with transit through G1 phase, there was a six-fold increase in both myosin protein levels and myosin association with actin cytoskeleton. There was also a steady increase in myosin light chain phosphorylation and ATPase activity with spreading, which did not occur in non-spread, growth-arrested cells on low density of fibronectin. Myosin-inhibiting drugs blocked ERK activation, cyclin D1 expression, and S phase entry. Overexpression of the cell cycle protein cyclin D1 overcame both ECM-dependent and actomyosin-dependent inhibition of DNA synthesis, suggesting that cyclin D1 is a key event downstream of myosin-dependent cell cycle regulation.  相似文献   

6.
The hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and keratinocyte growth factor (KGF) belong to the network of autocrine and paracrine mediators in the skin. Both were shown to modulate keratinocyte proliferation, to reverse epidermal atrophy, to increase wound healing, and to reduce chemotherapy-induced alopecia. The overlap between their activities may suggest that vitamin D exerts some of its actions by modulation of KGF activities in the skin. This notion was examined by using HaCaT keratinocytes cultured in serum-free medium in the absence of exogenous growth factors and in the presence of the EGF receptor tyrosine kinase inhibitor AG 1478 that blocks their autonomous proliferation. These cells could be stimulated to proliferate by different fibroblast growth factors (FGFs). The relative mitogenic efficacy of basic FGF, acidic FGF, or KGF was in correlation with their affinities for the KGF receptor (KGFR). Forty-eight hour co-treatment with 1,25(OH)(2)D(3) enhanced KGFR-mediated cell proliferation in a dose dependent manner. Both ERK1/2 and c-Jun N-terminal kinase (JNK) were activated by the FGFs. Treatment with 1,25(OH)(2)D(3) increased the activation of ERK but reduced the activation of JNK. Treatment with 1,25(OH)(2)D(3) increased the levels of KGFR in the presence but not in the absence of KGF, probably due to inhibition of ligand-induced receptor degradation. Inhibition of protein kinase C with bisindolylmaleimide did not interfere with the effect of 1,25(OH)(2)D(3) on KGFR-mediated ERK activation. Our results support the notion that the paracrine KGF-KGFR system in the skin can act in concert with the autocrine vitamin D system in keratinocytes to promote keratinocyte proliferation and survival under situations of stress and injury.  相似文献   

7.
Summary The differentiation of tracheal epithelial cells in primary culture was investigated according to the nature of the extracellular matrix used. Cultures obtained by the explant technique were realized on a type I collagen substratum either as a thin, dried coating or as a thick, hydrated gel supplemented with culture medium and serum. These two types of substratum induced distinct cell morphology and cytokeratin expression in the explant derived cells. Where cells are less proliferating (from Day 7 to 10 of culture), differentiation was evaluated by morphologic ultrastructural observations, immunocytochemical detection of cytokeratins, and determination of cytokeratin pattern by biochemical analysis. The epithelium obtained on gel was multilayered, with small, round basal cells under large, flattened upper cells. The determination of the keratin pattern expressed by cells grown on gel revealed an expression of keratin 13, already considered as a specific marker of squamous metaplasia, that diminished with retinoic acid treatment. Present results demonstrated by confocal microscopy that K13-positive cells were large upper cells with a dense keratin network, whereas lower cells were positively stained with a specific monoclonal antibody to basal cells (KB37). Moreover, keratin neosynthesis analysis pointed out a higher expression of K6, a marker of hyperproliferation, on gel than on coating. All these data suggest a differentiation of rabbit tracheal epithelial cells grown on gel toward squamous metaplasia. By contrast, the epithelium observed on coating is nearly a monolayer of very large and spread out cells. No K13-positive cells were observed, but an increase in the synthesis of simple epithelium marker (K18) was detected. These two substrata, similar in composition and different in structure, induce separate differentiation and appear as good tools to explore the mechanisms of differentiation of epithelial tracheal cells.  相似文献   

8.
Wound healing is a dynamic process comprising multiple events, such as inflammation, re-epithelialization, and tissue remodeling. Re-epithelialization phase is characterized by the engagement of several cell populations, mainly of keratinocytes that sequentially go through cycles of migration, proliferation, and differentiation to restore skin functions. Troubles can arise during the re-epithelialization phase of skin wound healing particularly in keratinocyte migration, resulting in chronic non-healing lesions, which represent a serious clinical problem. Over the last decades, the efforts aimed to find new pharmacological approaches for wound care were made, yet almost all current therapeutic strategies used remain inadequate or even ineffective. As such, it is crucial to identify new drugs that can enable a proper regeneration of the epithelium in wounded skin. Here, we have investigated the effects of the fibrinolytic drug mesoglycan, a glycosaminoglycans mixture derived from porcine intestinal mucosa on HaCaT human keratinocytes that were used as in vitro experimental model of skin re-epithelialization. We found that mesoglycan induces keratinocyte migration and early differentiation by triggering the syndecan-4/PKCα pathway and that these effects were at least in part, because of the formation of the annexin A1/S100A11 complex. Our data suggest that mesoglycan may be useful as a new pro-healing drug for skin wound care.  相似文献   

9.
Day RM  Mitchell TJ  Knight SC  Forbes A 《Cytokine》2003,21(5):224-233
Syndecan-1 is expressed on the basolateral surface of columnar epithelium and contributes to wound repair by facilitating increased growth factor binding. Inflammatory bowel disease (IBD) is associated with reduced syndecan-1 expression in areas of inflamed mucosa that is likely to impair mucosal healing. Reduced syndecan-1 expression in IBD may be related to the presence of increased inflammatory cytokines. To test this hypothesis, monolayers of HT29 and T84 colonic epithelial cells were stimulated with tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta or IL-6. Stimulation of HT29 cells with TNF-alpha and IL-1beta resulted in reversible down-regulation of syndecan-1 at both protein and mRNA levels but little effect was observed with IL-6. Loss of syndecan-1 expression was caused by shedding of the ectodomain as revealed by increased levels of soluble syndecan-1 measured in the conditioned medium of stimulated cells. No increase in cytoplasmic staining accompanied the loss of cell surface syndecan-1 expression. TNF-alpha and IL-1beta are capable of down-regulating syndecan-1 expression and may account in part for the reduced expression of syndecan-1 seen in IBD.  相似文献   

10.
11.
Transgenic expression in the hypothalamus of syndecan-1, a cell surface heparan sulfate proteoglycan (HSPG) and modulator of ligand-receptor encounters, produces mice with hyperphagia and maturity-onset obesity resembling mice with reduced action of alpha melanocyte stimulating hormone (alphaMSH). Via their HS chains, syndecans potentiate the action of agouti-related protein and agouti signaling protein, endogenous inhibitors of alphaMSH. In wild-type mice, syndecan-3, the predominantly neural syndecan, is expressed in hypothalamic regions that control energy balance. Food deprivation increases hypothalamic syndecan-3 levels several-fold. Syndecan-3 null mice, otherwise apparently normal, respond to food deprivation with markedly reduced reflex hyperphagia. We propose that oscillation of hypothalamic syndecan-3 levels physiologically modulates feeding behavior.  相似文献   

12.
13.
BackgroundThe endothelial glycocalyx, located at the interface of vascular lumen, is a carbohydrate-rich complex that controls vascular functions such as solute permeation and mechanotransduction. It anchors to the cell membrane through core proteins, e.g. syndecan-1, which couple to the actin cytoskeleton. Membrane tension plays an important role in the reorganisation of membrane-bound proteins, however, little is known on the effect of the membrane tension on the various components of the glycocalyx.MethodsHypo-osmotic stress is used to investigate the effect of the membrane tension on syndecan-1 expression.ResultsFollowing 20 min exposure to hypo-osmotic medium, the expression of syndecan-1 in the endothelial glycocalyx layer is reduced to 84.7 ± 3.6% (255 mOsm) and 64.7 ± 2.1% (167 mOsm). This reduction, however, is transient and partial recovery is observed at the end of 2 h exposure to the hypo-osmotic medium. The transient reduction of syndecan-1 is associated with depolymerisation of the actin cytoskeleton. Further examination of the effect of actin manipulation reveals that actin depolymerisation by cytochalasin D results in sustained syndecan-1 reduction. In contrast, stabilising actin using jasplakinolide abolishes the transient reduction of syndecan-1completely.ConclusionsWe demonstrate, for the first time, that membrane tension plays an important role in the regulation of syndecan-1 expression and this effect is mediated by the reorganisation of the actin cytoskeleton.General significanceFindings in this study suggest a new venue of research on the protective role of the glycocalyx in vascular pathophysiology and diseases.  相似文献   

14.
Yu XJ  Li CY  Wang KY  Dai HY 《Regulatory peptides》2006,137(3):134-139
Psoriasis is a chronic disease characterized by abnormal epidermal proliferation, inflammation and angiogenesis. The pathogenetic process resulting in hypervascularity remains to be further investigated. It has been reported that a potent angiogenic factor, vascular endothelial growth factor (VEGF) is overexpressed in psoriatic epidermis and that the level of calcitonin gene-related peptide (CGRP) is elevated in psoriasis lesions and CGRP-containing neuropeptide nerve fibers are denser in the psoriatic epidermis. We hypothesized that CGRP might regulate the expression of VEGF by human keratinocytes. VEGF expression in the CGRP-treated human keratinocytes was investigated and the CGRP signaling pathways were examined with respect to VEGF expression. The mRNA and protein levels of VEGF by CGRP were increased in a concentration-dependent manner. However, this increase was abrogated by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor PD98059. The CGRP-mediated VEGF induction was also effectively inhibited by a pretreatment with the CGRP receptor antagonist CGRP 8-37. In addition, CGRP treatment induced rapid phosphorylation of ERK1/2, PD98059 and CGRP 8-37 were able to inhibit CGRP-induced ERK1/2 phosphorylation. These results suggest that CGRP regulates the expression of VEGF through the CGRP receptor and ERK1/2 MAPK signaling pathway in human HaCaT keratinocytes.  相似文献   

15.
In vitro studies have shown that keratinocyte growth factor (KGF, also known as FGF-7) is secreted by fibroblasts and is mitogenic specifically for epithelial cells. Therefore, KGF may be an important paracrine mediator of epithelial cell proliferation in vivo. Because stromal cells are thought to influence glandular proliferation in the primate endometrium, we investigated the hormonal regulation and cellular localization of KGF mRNA expression in the rhesus monkey uterus. Tissues were obtained both from naturally cycling monkeys in the follicular and luteal phases of the cycle, and from spayed monkeys that were either untreated or treated with estradiol (E2) alone, E2 followed by progesterone (P), E2 plus P, or E2 plus P plus an antiprogestin (RU 486). Northern blot analysis of total RNA with 32P- labeled probes revealed that the level of KGF mRNA in the endometrium was 70-100-fold greater in the luteal phase or after P treatment than in untreated, E2-treated, or follicular phase animals. Northern analysis also showed that KGF mRNA was present in the myometrium but was unaffected by hormonal state. RU 486 treatment prevented the P- induced elevation of endometrial KGF mRNA. P-dependent elevation of endometrial KGF expression was confirmed by measurement of KGF protein in tissue extracts using a two-site enzyme-linked immunosorbent assay. In situ hybridization with nonradioactive digoxigenin-labeled cDNA probes revealed that the KGF mRNA signal, which was present only in stromal and smooth muscle cells, was substantially increased by P primarily in the stromal cells located in the basalis region. Smooth muscle cells in the myometrium and the walls of the spiral arteries also expressed KGF mRNA, but the degree of this expression did not differ with hormonal state. P treatment led to increased proliferation in the glandular epithelium of the basalis region and to extensive growth of the spiral arteries. We conclude that the P-dependent increase in endometrial KGF resulted from a dual action of P: (a) a P- dependent induction of KGF expression in stromal cells, especially those in the basalis (zones III and IV), and (b) a P-dependent increase in the number of KGF-positive vascular smooth muscle cells caused by the proliferation of the spiral arteries. KGF is one of the first examples in primates of a P-induced, stromally derived growth factor that might function as a progestomedin.  相似文献   

16.
During the wound healing process lysis of basement membranes precedes keratinocyte migration into the wound bed. We studied, in vitro, whether this degradation of basement membranes could be regulated by transforming growth factor-beta 1 (TGF-beta 1), which is known to accelerate wound healing in vivo. Transforming growth factor-beta 1 was found to increase the expression of both 92- and 72-kDa type IV collagenases (gelatinases) in cultured human mucosal and dermal keratinocytes. The 92-kDa enzyme predominated in both unstimulated and stimulated cultures. The 92-kDa form was stimulated over 5-fold, and the other form by a factor of 2-3. This increase in the synthesis of type IV collagenases was associated with a marked increase in the mRNA levels of these enzymes as well. The induction of the 92-kDa enzyme was similar in culture medium containing either 0.15 or 1.2 mM calcium chloride. Rat mucosal keratinocytes secreted only 92-kDa type IV collagenase, the secretion of which was not regulated by TGF-beta 1. Also, TGF-beta 1 did not cause any significant induction (maximum about 1.2-fold) of either type IV collagenase in human gingival fibroblasts. The induction levels of both collagenases in human keratinocytes were independent of the type of the extracellular matrix the cells were grown on. However, the basement membrane matrix (Matrigel) activated about half of the 92-kDa type to its 84-kDa active form. The data suggest that TGF-beta 1 has a specific function in up-regulating the expression of type IV collagenases in human keratinocytes, offering a possible explanation of how keratinocytes detach from basement membranes prior to the migration over the wound bed.  相似文献   

17.

Background  

In order to unravel the interactions between the epithelium and the extra cellular matrix (ECM) in breast tissue progressing to cancer, it is necessary to understand the relevant interactions in healthy tissue under normal physiologic settings. Proteoglycans in the ECM play an important role in the signaling between the different tissue compartments. The proteoglycan decorin is abundant in the breast stroma. Decreased expression in breast cancer tissue is a sign of a poor tumor prognosis. The heparane sulphate proteoglycans syndecan-1 and syndecan-4 promote the integration of cellular adhesion and proliferation. The aim of this study was to investigate the gene expression and location of decorin, syndecan-1 and syndecan-4 in the healthy breast during the menstrual cycle.  相似文献   

18.
Brucato S  Villers C 《Biochimie》2002,84(7):681-686
Our previous studies indicated that cell surface proteoglycans were mostly heparan sulfate ones (HSPG) in 20 day-old Sertoli cells [Biochim. Biophys. Acta 1510 (2001) 474]. Among these HSPG, glypican-1, syndecans-1 and -4 mRNAs were expressed and differentially regulated. Glypican-1 and syndecan-1 mRNA expression was up-regulated under PKC activation in contrast to syndecan-4 mRNA expression which was not affected [Biochim. Biophys. Acta 1474 (2000) 31]. Rat Sertoli cells undergo extensive changes during the postnatal period both in structure and function, as the hematotesticular barrier establishment occurs at around 20 day-old. The testicular PKCalpha expression in developing Sertoli cells results in (i) a soluble (inactive) form which is maximal at the age of 1 day and declines gradually thereafter and (ii) a particulate (active) form which is low at birth, increases six-fold on days 8-11 of age and declines thereafter. The present study focused on the glypican-1, syndecan-1 and syndecan-4 mRNA expression and regulation under PKC activation by the phorbol myristate acetate (PMA) in 10-30 day-old Sertoli cells. Our data indicated that the regulation of their expression specifically depends on the nature of HSPG and Sertoli cell developmental stage and evidenced a specific PKC regulation of HSPG mRNA expression.  相似文献   

19.
20.
Lipin-1 is an Mg2+-dependent phosphatidate phosphatase that facilitates the dephosphorylation of phosphatidic acid to generate diacylglycerol. Little is known about the expression and function of lipin-1 in normal human epidermal keratinocytes (NHEKs). Here, we demonstrate that lipin-1 is present in basal and spinous layers of the normal human epidermis, and lipin-1 expression is gradually downregulated during NHEK differentiation. Interestingly, lipin-1 knockdown (KD) inhibited keratinocyte differentiation and caused G1 arrest by upregulating p21 expression. Cell cycle arrest by p21 is required for commitment of keratinocytes to differentiation, but must be downregulated for the progress of keratinocyte differentiation. Therefore, reduced keratinocyte differentiation results from sustained upregulation of p21 by lipin-1 KD. Lipin-1 KD also decreased the phosphorylation/activation of protein kinase C (PKC)α, whereas lipin-1 overexpression increased PKCα phosphorylation. Treatment with PKCα inhibitors, like lipin-1 KD, stimulated p21 expression, while lipin-1 overexpression reduced p21 expression, implicating PKCα in lipin-1-induced regulation of p21 expression. Taken together, these results suggest that lipin-1-mediated downregulation of p21 is critical for the progress of keratinocyte differentiation after the initial commitment of keratinocytes to differentiation induced by p21, and that PKCα is involved in p21 expression regulation by lipin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号