首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mouse monoclonal antibody ME 101 raised against human peripherin, an intermediate filament protein (IFP) specific to well defined neuronal populations, recognizes all the major classes of vertebrate IFP in immunoblotting assays. Desmin, GFAP, vimentin, peripherin and the lightest neurofilament protein (NF-L) were cleaved into carboxy- and amino-terminal halves by N-chlorosuccinimide at their unique trytophan residue. Whereas the antibody directed against the epitope common to every IFP (intermediate filament antigen or IFA) and located on the carboxy-terminal end of the rod domain recognizes the carboxy-terminal half, the ME 101 antibody, as the present study illustrates, recognizes specifically the amino-terminal half. From the amino acid sequence data of IFP, it is deduced that the cognate epitope is localized on the amino-terminal part of coil la.  相似文献   

3.
We prepared monoclonal antibodies against penicillin-binding protein 1B (PBP 1B) of Escherichia coli to study the membrane topology, spatial organization, and enzyme activities of this protein. The majority of the antibodies derived with PBP 1B as the immunogen reacted against the carboxy terminus. To obtain monoclonal antibodies recognizing other epitopes, we used PBP 1B lacking the immunodominant carboxy-terminal 65 amino acids as the immunogen. Eighteen monoclonal antibodies directed against membrane-bound PBP 1B were isolated and characterized. The epitopes recognized by those monoclonal antibodies were located with various truncated forms of PBP 1B. We could distinguish four different epitope areas located on different parts of the molecule. Interestingly, we could not isolate monoclonal antibodies against the amino terminus, although they were specifically selected for. This is attributed to its predicted extreme hydrophilicity and flexibility, which could make the amino terminus very sensitive to proteolytic degradation. All antibodies reacted against native PBP 1B in a dot-blot immunobinding assay. One monoclonal antibody also recognized PBP 1B in a completely sodium dodecyl sulfate-denatured form. This suggests that all the other monoclonal antibodies recognize conformational epitopes. These properties make the monoclonal antibodies suitable tools for further studies.  相似文献   

4.
Natural and induced antitubulin antibodies were compared for their epitope recognition on alpha- and beta-tubulin subunits by immunoenzymatic assays and Western blot techniques on partially digested tubulin molecules. Our results indicated that natural autoantibodies recognized different epitopes from those recognized by induced antibodies, because: 1) all polyspecific natural autoantibodies tested so far recognized the same or very overlapping epitopes in the central part of both alpha- and beta-subunits (between positions 100 and 300 on the tubulin amino acid sequence) and that this epitope differed from the various epitopes recognized by induced antitubulin antibodies on the amino-terminal or carboxy-terminal parts of the tubulin subunits; 2) one human myeloma protein (monoclonal (m)IgA, kappa) with a monospecific antitubulin activity bound to an epitope around position 310 on both alpha- and beta-subunits and a second human mIg (mIgM, kappa) with a monospecific anti-beta activity bound to an epitope on the carboxy-terminal part of the subunit around amino acid position 350. Both epitopes differed from epitopes recognized by induced antitubulin antibodies. These results thus confirmed our previous findings indicating that natural and induced antitubulin antibodies do not share cross-reactive idiotopes.  相似文献   

5.
The functional domains of the eukaryotic elongation factor (EF) 1 beta gamma have been delineated with the use of limited proteolysis, protein microsequencing, gel electrophoresis under non-denaturing conditions and antibodies against EF-1 beta and EF-1 gamma. By means of limited proteolysis, it was possible to obtain large fragments of EF-1 beta. In contrast to amino-terminal fragments, those derived from the carboxy-terminal part of EF-1 beta were still active in enhancing the guanine nucleotide exchange of GDP bound to EF-1 alpha. With the same technique of limited proteolysis, it was possible to isolate a trypsin-resistant core from EF-1 beta gamma containing polypeptide chain fragments derived from both subunits. A polyvalent antiserum against EF-1 beta and two monoclonal antibodies against EF-1 gamma were used to identify the protein fragments in this core. The monoclonal antibodies were shown to recognize different epitopes, one localized on the amino-terminal and another on the carboxy-terminal half of EF-1 gamma. The antiserum against EF-1 beta and one of the monoclonal antibodies (mAb 36E5), which recognized the amino-terminal half of EF-1 gamma, reacted with this trypsin-resistant core. We conclude that the amino-terminal halves of both EF-1 beta and EF-1 gamma are firmly attached to each other, and that the carboxy-terminal part of EF-1 beta interacts with EF-1 alpha.  相似文献   

6.
In order to determine the epitope of metallothionein (MT) to a murine monoclonal antibody (MT 189-14-7) which had been produced by immunization with rat MT 2 (Kikuchi et al. (1988) Mol. Immunol. 25, 1033-1036), various lengths of synthetic oligopeptides were tested for their inhibitory activities in competitive radioimmunoassay (RIA). The amino-terminal acetylated pentapeptide, AcMDPNC, exhibited an inhibitory activity comparable to that of native MTs, whereas the acetylated tetrapeptide, AcMDPN, and the deacetylated heptapeptide, MDPNCSC, were much less inhibitory. The results suggest that the major part of the epitope structure of MT to the MT 189-14-7 monoclonal antibody is located within the amino-terminal acetylated pentapeptide, AcMDPNC. The specificities of polyclonal rabbit anti-MT antisera raised against the same immunogen were also determined by using various animal MTs and synthetic peptides as inhibitors in the RIA. Among three antisera tested, two reacted with several amino-terminal oligopeptides similarly to the MT 189-14-7 antibody. The major epitope structures to these polyclonal antibodies were shown to be located within the acetylated tetrapeptide, AcMDPN. Another antiserum contained at least two different populations of antibodies: one consisted of antibodies reactive with the amino-terminal synthetic peptides, while the other was not reactive with them. These results suggest that, in the rabbit also, the amino-terminal region common to various animal MTs can be an epitope to antibodies raised against rat MT, as shown in the mouse. Moreover, the results indicate that the synthetic amino-terminal peptides are useful for determination of the specificity of polyclonal rabbit anti-MT antibodies, which have been widely used for the quantification of MTs.  相似文献   

7.
Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.  相似文献   

8.
The murine coronavirus surface glycoprotein gene was expressed as a fusion protein in bacteria, and the expressed protein was used to generate S protein-specific monoclonal antibodies (MAbs). Three of the MAbs, 11F, 30B, and 10G, were able to neutralize virus infectivity, and two of them, 11F and 10G, were able to block virus-induced, cell-to-cell fusion. The binding sites of the 11F, 30B, and 10G MAbs were determined by Western immunoblotting and epitope mapping. The 11F and 30B MAbs bound to sites located, respectively, between amino acids 33 to 40 and 395 to 406 in the amino-terminal (S1) subunit of the S protein, and the 10G MAb bound to a site located between amino acids 1123 and 1137 in the carboxy-terminal (S2) subunit. These data define more precisely the interactions between the S1 and S2 subunits of the murine coronavirus S protein and provide further insights into its structure and function.  相似文献   

9.
The neurotoxin associated with type A infant botulism in Japan shows different antigenic properties from those produced by authentic strains. The monoclonal antibodies recognizing the light chain reacted to both neurotoxins, whereas half the antibodies recognizing the heavy chain reacted specifically to the respective neurotoxin. Each neurotoxin showed its own manner of binding to brain synaptosomes. These results indicate that the distinguishable characteristics are ascribable to the heavy chain but not to the light chain. In both neurotoxins, an epitope recognized by the monoclonal antibody that reacts to the light chain and neutralizes the toxin was found to be very close to the amino-terminal half (H-1 fragment) of the heavy chain. This may support the hypothesis that the H-1 fragment functions in the transport of the light chain in the target cell.  相似文献   

10.
Three mouse hybridomas secreting antibodies against the undecapeptide Lys-Pro-Pro-Thr-Pro-Pro-Pro-Glu-Pro-Glu-Thr, corresponding to the carboxy terminus of simian virus 40 large T antigen, were isolated and cloned. A sensitive enzyme-linked immunosorbent assay was used to characterize the properties of the monoclonal antibodies. All three hybridomas, designated KT1, KT3, and KT4, produced antibodies that immunoprecipitated large T. The antibodies differed in their affinities for the peptide and for the native protein. Antibodies from KT3 precipitated large T better than those from KT1 or KT4. KT3 antibodies also had the highest affinity for the free peptide (5.2 X 10(6) M-1) as determined by radioimmunoassay; KT1 and KT4 antibodies had ca. 5- and 1,000-fold lower affinities, respectively. Inhibition studies with shorter peptides, overlapping the undecapeptide, revealed the approximate regions recognized by the different monoclonal antibodies. KT3 antibodies bound to a region within the carboxy-terminal six amino acids of large T. Antibodies from KT1 and KT4 reacted with sequences located further towards the amino terminus of the undecapeptide. Surprising results were obtained with KT4 antibodies. Their binding to the undecapeptide was completely inhibited by the undecapeptide itself or the carboxy-terminal hexapeptide. The carboxy-terminal pentamer, on the other hand, slightly enhanced binding, and the carboxy-terminal tetramer, Glu-Pro-Glu-Thr, was strongly stimulatory. A model for this effect is proposed. Using the enzyme-linked immunosorbent assay, we confirmed previous studies (W. Deppert and G. Walter, Virology 122:56-70, 1982) which found that antiserum against sodium dodecyl sulfate-denatured large T reacts strongly with the carboxy terminus of large T. By inhibition studies, we identified the approximate region within the undecapeptide recognized by anti-sodium dodecyl sulfate-denatured large T and compared this region with the region identified by antipeptide serum.  相似文献   

11.
Polyclonal and monoclonal antibodies were raised against a synthetic peptide containing the 15 carboxy-terminal amino acids (497-511) of vesicular stomatitis virus glycoprotein (VSV-G). The polyclonal antibodies (alpha P4) reacted with epitopes distributed along the 15-residue peptide, whereas the monoclonal antibody (P5D4) reacted with one epitope containing the five carboxy-terminal amino acids. Both types of antibodies recognized the cytoplasmic domain of VSV-G synthesized by tissue culture cells infected with the temperature-sensitive 045-VSV mutant (ts045-VSV). They recognized immature forms of VSV-G in the rough endoplasmic reticulum (RER) and Golgi complex, as well as mature VSV-G at the cell surface and in budding virus. The effect of these antibodies on intracellular transport and maturation of VSV-G was studied by microinjection. Both divalent antibodies (alpha P4 and P5D4) blocked transport of VSV-G to the cell surface. Monovalent Fab' fragments of alpha P4 (alpha P4-Fabs) also interfered with the appearance of VSV-G at the cell surface; Fab fragments of P5D4 (P5D4-Fabs), however, had no inhibitory effect. These results suggest that accessibility of a cytoplasmic domain, located within the sequence of amino acids 497-506 of the carboxy-terminal tail, is essential for transport of VSV-G to the cell surface.  相似文献   

12.
Anglerfish prosomatostatin II, the precursor of somatostatin-28 II, is produced in different cells from prosomatostatin I, by a cleavage at Arg73. Antibodies were raised against the carboxy-terminal [64-72] portion of the precursor II upstream from somatostatin-28 II sequence. These antibodies recognized only this epitope when unmasked from the entire precursor, allowing the detection of the [1-72] domain which was isolated from pancreatic islets extracts. The antibodies were used to monitor the peptide bond cleavage occurring at the carboxy terminus of Arg73 to generate somatostatin-28 II. Immunocytochemistry revealed labeling both in the vesicles budding from the trans-Golgi network and in the dense core granules. Together, these data support the conclusions that i) prohormone processing is initiated in the Golgi apparatus of the pancreatic islet cells; ii) the "non-hormonal" [1-72] amino-terminal domain of the precursor may be involved in some intra and/or extra-cellular function(s).  相似文献   

13.
We have characterized the epitope of the rat monoclonal antibody YL 1/2 in detail using synthetic peptides and several alpha-tubulin derivatives. The epitope seems to be provided by the linear sequence spanning the carboxy-terminal residues of tyrosinated alpha-tubulin. By competitive ELISA, dipeptides covering the carboxyl end could be antigenically recognized. Three sites were deduced at the dipeptide level: a negatively charged side chain in the penultimate position followed by an aromatic residue which must carry the free carboxylate group. Experiments with longer peptides point to a further negative charge provided by a carboxylate group on the third residue from the end. Thus the tripeptide Glu-Glu-Tyr was only 5-fold less active than the octapeptide spanning the carboxy-terminal alpha-tubulin sequence. The octapeptide itself showed only a 40-fold lower activity than tyrosinated alpha-tubulin. In line with the emerging epitope requirements of YL 1/2, the Escherichia coli rec A protein, the catalytic subunit of the cyclic AMP-dependent muscle protein kinase as well as performic acid-oxidized actin were recognized by YL 1/2 in immunoblots. These results thus define the sequence requirements within a probably linear epitope and give rise to some general questions concerning experiments where monoclonal antibodies are microinjected into cells in order to assess the contribution of a known antigen to cellular physiology.  相似文献   

14.
We have characterized immunogenic epitopes of the 31-kDa outer surface protein A (OspA) protein of Borrelia burgdorferi, which is a major surface Ag of the spirochete causing Lyme disease. Full length and truncated forms of rOspA proteins were expressed in Escherichia coli, and their reactivities with antibodies and human T cell clones isolated from patients with Lyme disease were determined. The epitopes recognized by three of four OspA-reactive T cell clones are contained within the 60 COOH-terminal amino acids. Each of the four OspA-reactive T cell clones has a different HLA class II molecule involved in Ag recognition and recognizes a distinct epitope. One T cell clone promiscuously recognized an epitope in the context of different HLA-DQ molecules. In addition, the binding of a murine monoclonal anti-OspA antibody, as well as antibodies in sera of three of five patients with Lyme disease, was dependent upon the amino acids in the carboxy-terminal protion of this protein. Taken together, our results indicate that the 60 COOH-terminal amino acids of OspA contain epitopes recognized by human antibodies and T cells.  相似文献   

15.
Osteopontin (OPN) is a secreted protein that has been implicated in diverse physiological and pathological processes. OPN can bind to integrins, via GRGDS or SVVYGLR amino acid sequences, and to other cell surface receptors, and many of OPN's functions are likely mediated via cell adhesion and subsequent signaling. Here we developed and characterized a series of five monoclonal antibodies, raised to distinct internal peptide sequences of human OPN, and have used these sequence-specific reagents, along with the previously described anti-OPN monoclonal antibody mAb53, to map functional epitopes of OPN that are important to cell adhesion and migration. All antibodies were reactive with native as well as recombinant human OPN. One antibody (2K1) raised against the peptide VDTYDGRGDSVVYGLRS could inhibit RGD-dependent cell binding to OPN, with an efficacy comparable to that of mAb53. Furthermore, 2K1 could inhibit alpha9 integrin-dependent cell binding to OPN. The epitope recognized by 2K1 was not destroyed by thrombin digestion, whereas mAb53 has been shown to be unable to react with OPN following thrombin cleavage. The two distinct epitopes defined by 2K1 and mAb53 antibodies are closely related to the SVVYGLR cell-binding domain and the GLRSKS containing thrombin cleavage site, respectively, and are involved in cell binding and cell migration.  相似文献   

16.
Two human and twelve murine monoclonal antibodies directed against the main bee venom allergen phospholipase A2 (PLA) were evaluated for their fine specificity of binding to antigen and their ability to inhibit the enzymatic activity of the antigen. Antibodies were induced by natural exposure of beekeepers to bee venom or immunization of mice via different methods. Both human monoclonal antibodies (hmAbs) were previously shown to recognize the native three-dimensional conformation of PLA and are directed against discontinuous epitopes which include lysine residue at position 25 as a contact residue. In contrast, six of the murine monoclonal antibodies (mmAbs) bind to the denatured structure of the protein as determined by enzyme-linked immunosorbent assay. The epitopes recognized are located near the C-terminal end (n=8), in the centre of the polypeptide (n=1), near the N-terminal end (n=1) or include the carbohydrate part (n=2) of the PLA molecule. The capacity of the antibodies to modify the enzymatic activity was also determined. The hmAbs significantly inhibit the enzyme (70–79%), whereas the mmAbs produced various degrees of inhibition (39–100%). Since the X-ray structure of PLA is known, the epitopes can be visualized in the context of the three-dimensional structure of the antigen. A qualitative correlation was found between the location of epitopes and the inhibition pattern. Strong inhibition was seen with those antibodies that recognize epitopes that lie on the surface of the enzyme that is thought to contact the phospholipid bilayer. The results show that even though both hmAbs and most mmAbs inhibit the enzymatic activity of PLA, the antigen-binding properties of antibodies from different species raised after different routes of immunization differ significantly. Thus, detailed epitope mapping studies using murine antibodies prepared by artificial immunization may have limited value in predicting epitope patterns relevant to an antibody response to allergens in humans naturally exposed to antigen/allergen. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

18.
Myosin light chain kinase can be divided into three distinct structural domains, an amino-terminal "tail," of unknown function, a central catalytic core and a carboxy-terminal calmodulin-binding regulatory region. We have used a combination of deletion mutagenesis and monoclonal antibody epitope mapping to define these domains more closely. A 2.95-kilobase cDNA has been isolated that includes the entire coding sequence of rabbit skeletal muscle myosin light chain kinase (607 amino acids). This cDNA, expressed in COS cells encoded a Ca2+/calmodulin-dependent myosin light chain kinase with a specific activity similar to that of the enzyme purified from rabbit skeletal muscle. Serial carboxy-terminal deletions of the regulatory and catalytic domains were constructed and expressed in COS cells. The truncated kinases had no detectable myosin light chain kinase activity. Monoclonal antibodies which inhibit the activity of the enzyme competitively with respect to myosin light chain were found to bind between residues 235-319 and 165-173, amino-terminal of the previously defined catalytic core. Thus, residues that are either involved in substrate binding or in close proximity to a light chain binding site may be located more amino-terminal than the previously defined catalytic core.  相似文献   

19.
Osteopontin (OPN) is a secreted adhesive glycoprotein with a functional glycine-arginine-glycine-aspartate-serine (GRGDS) cell-binding domain. An interesting feature of OPN structure is the presence of a thrombin-cleavage site in close proximity to the GRGDS region. Cleavage of OPN by thrombin is likely to be of physiological importance, because cleavage of blood plasma OPN occurs naturally after activation of the blood coagulation pathway. To investigate functional consequences of OPN cleavage by thrombin, cell attachment and spreading assays were performed with uncleaved and cleaved forms of OPN. For all cell lines examined, thrombin-cleaved OPN promoted markedly greater cell attachment and spreading than uncleaved OPN. Cell attachment and spreading on thrombin-cleaved OPN was inhibited both by the soluble GRGDS peptides and an OPN-specific antibody raised to the GRGDS domain of OPN, thus implicating the GRGDS region in mediating the increased cell attachment and spreading observed on thrombin-cleaved OPN. Because the GRGDS sequence in OPN is only six residues from the thrombin-cleavage site, the data suggest that possibility that thrombin cleavage allows greater accessibility of the GRGDS domain to cell surface receptors. To investigate receptors that recognize uncleaved and thrombin-cleaved OPN, affinity chromatography was performed on placental extracts; the cell surface integrin alpha v beta 3 bound to columns constructed either with native or thrombin-cleaved OPN and was selectively eluted from each with soluble GRGDS peptide and EDTA. Moreover, adhesion assays performed in the presence of alpha v beta 3 blocking monoclonal antibody LM609 identified alpha v beta 3 as a major functional receptor for thrombin-cleaved OPN. Several lines of evidence suggest that cleavage of OPN by thrombin occurs in vivo, such as in tumors and at sites of tissue injury, and adhesion assay data presented here indicate that such cleavage is important in the regulation of OPN function.  相似文献   

20.
Rat Mx2 and rat Mx3 are two alpha/beta interferon-inducible cytoplasmic GTPases that differ in three residues in the amino-terminal third, which also contains the tripartite GTP-binding domain, and that differ in five residues in the carboxy-terminal quarter, which also contains a dimerization domain. While Mx2 is active against vesicular stomatitis virus (VSV), Mx3 lacks antiviral activity. We mapped the functional difference between Mx2 and Mx3 protein to two critical residues in the carboxy-terminal parts of the molecules. An exchange of either residue 588 or 630 of Mx2 with the corresponding residues of Mx3 abolished anti-VSV activity, and the introduction of the two Mx2 residues on an Mx3 background partially restored anti-VSV activity. These results are consistent with the facts that Mx2 and Mx3 have similar intrinsic GTPase activities and that the GTPase domain of Mx3 can fully substitute for the GTPase domain of Mx2. Nevertheless, the amino-terminal third containing the GTP-binding domain is necessary for antiviral activity, since an amino-terminally truncated Mx2 protein is devoid of anti-VSV activity. Furthermore, Fab fragments of a monoclonal antibody known to neutralize antiviral activity block GTPase activity by binding an epitope in the carboxy-terminal half of Mx2 or Mx3 protein. The results are consistent with a two-domain model in which both the conserved amino-terminal half and the less-well-conserved carboxy-terminal half of Mx proteins carry functionally important domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号