首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble flavoprotein that reoxidizes NADH and reduces molecular oxygen to water was purified from the facultative anaerobic human pathogen Streptococcus pneumoniae. The nucleotide sequence of nox, the gene which encodes it, has been determined and was characterized at the functional and physiological level. Several nox mutants were obtained by insertion, nonsense or missense mutation. In extracts from these strains, no NADH oxidase activity could be measured, suggesting that a single enzyme encoded by nox, having a C44 in its active site, was utilizing O2 to oxidize NADH in S. pneumoniae. The growth rate and yield of the NADH oxidase-deficient strains were not changed under aerobic or anaerobic conditions, but the efficiency of development of competence for genetic transformation during growth was markedly altered. Conditions that triggered competence induction did not affect the amount of Nox, as measured using Western blotting, indicating that nox does not belong to the competence-regulated genetic network. The decrease in competence efficiency due to the nox mutations was similar to that due to the absence of oxygen in the nox+ strain, suggesting that input of oxygen into the metabolism via NADH oxidase was important for controlling competence development throughout growth. This was not related to regulation of nox expression by O2. Interestingly, the virulence and persistence in mice of a blood isolate was attenuated by a nox insertion mutation. Global cellular responses of S. pneumoniae, such as competence for genetic exchange or virulence in a mammalian host, could thus be modulated by oxygen via the NADH oxidase activity of the bacteria, although the bacterial energetic metabolism is essentially anaerobic. The enzymatic activity of the NADH oxidase coded by nox was probably involved in transducing the external signal, corresponding to O2 availability, to the cell metabolism and physiology; thus, this enzyme may function as an oxygen sensor. This work establishes, for the first time, the role of O2 in the regulation of pneumococcal transformability and virulence.  相似文献   

2.
NADH oxidase-overproducing Lactococcus lactis strains were constructed by cloning the Streptococcus mutans nox-2 gene, which encodes the H2O-forming NADH oxidase, on the plasmid vector pNZ8020 under the control of the L. lactis nisA promoter. This engineered system allowed a nisin-controlled 150-fold overproduction of NADH oxidase at pH 7.0, resulting in decreased NADH/NAD ratios under aerobic conditions. Deliberate variations on NADH oxidase activity provoked a shift from homolactic to mixed-acid fermentation during aerobic glucose catabolism. The magnitude of this shift was directly dependent on the level of NADH oxidase overproduced. At an initial growth pH of 6.0, smaller amounts of nisin were required to optimize NADH oxidase overproduction, but maximum NADH oxidase activity was twofold lower than that found at pH 7.0. Nonetheless at the highest induction levels, levels of pyruvate flux redistribution were almost identical at both initial pH values. Pyruvate was mostly converted to acetoin or diacetyl via α-acetolactate synthase instead of lactate and was not converted to acetate due to flux limitation through pyruvate dehydrogenase. The activity of the overproduced NADH oxidase could be increased with exogenously added flavin adenine dinucleotide. Under these conditions, lactate production was completely absent. Lactate dehydrogenase remained active under all conditions, indicating that the observed metabolic effects were only due to removal of the reduced cofactor. These results indicate that the observed shift from homolactic to mixed-acid fermentation under aerobic conditions is mainly modulated by the level of NADH oxidation resulting in low NADH/NAD+ ratios in the cells.  相似文献   

3.
We investigated the metabolism of L-lactate in mitochondria isolated from potato tubers grown and saved after harvest in the absence of any chemical agents. Immunologic analysis by western blot using goat polyclonal anti-lactate dehydrogenase showed the existence of a mitochondrial lactate dehydrogenase, the activity of which could be measured photometrically only in mitochondria solubilized with Triton X-100. The addition of L-lactate to potato tuber mitochondria caused: (a) a minor reduction of intramitochondrial pyridine nucleotides, whose measured rate of change increased in the presence of the inhibitor of the alternative oxidase salicyl hydroxamic acid; (b) oxygen consumption not stimulated by ADP, but inhibited by salicyl hydroxamic acid; and (c) activation of the alternative oxidase as polarographically monitored in a manner prevented by oxamate, an L-lactate dehydrogenase inhibitor. Potato tuber mitochondria were shown to swell in isosmotic solutions of ammonium L-lactate in a stereospecific manner, thus showing that L-lactate enters mitochondria by a proton-compensated process. Externally added L-lactate caused the appearance of pyruvate outside mitochondria, thus contributing to the oxidation of extramitochondrial NADH. The rate of pyruvate efflux showed a sigmoidal dependence on L-lactate concentration and was inhibited by phenylsuccinate. Hence, potato tuber mitochondria possess a non-energy-competent L-lactate/pyruvate shuttle. We maintain, therefore, that mitochondrial metabolism of L-lactate plays a previously unsuspected role in the response of potato to hypoxic stress.  相似文献   

4.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H(2)O(2) oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

5.
6.
The behavior toward oxygen of several strains of Pediococcus halophilus was studied. Although these organisms are generally regarded as facultative anaerobes, this investigation showed that resting cells of P. halophilus consumed oxygen at the expense of p-giucose or L-lactate as substrate.

The oxygen consuming activities among strains of soy pediococci varied from 7.06 to 11.63 (nmol/min/mg dry cells) with glucose and 5.52 to 6.59 with L-lactate, respectively. Oxidative metabolism of glucose increased acetate production with a corresponding decrease in lactate formation. Lactate oxidation with O2. led to the formation of acetate. The oxygen consuming activity was not inhibited by any of the respiratory inhibitors tested such as KCN or NaN3

NADH oxidase activity was found iri cell-free extracts of P. halophilus No, 51, which is capable of lowering the redox potential of the growth medium. A direct correlation between the abilities to consume oxygen and to reduce the redox potential has not been found so far, but this enzyme is considered to be involved in the aerobic metabolism.  相似文献   

7.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

8.
AIMS: The characterization of global aerobic metabolism of Lactobacillus plantarum LP652 under different aeration levels, in order to optimize acetate production kinetics and to suppress H2O2 toxicity. METHODS AND RESULTS: Cultures of L. plantarum were grown on different aeration conditions. After sugar exhaustion and in the presence of oxygen, lactate was converted to acetate, H2O2 and carbon dioxide with concomitant ATP production. Physiological assays were performed at selected intervals in order to assess enzyme activity and vitality of the strain during lactic acid conversion. The maximal aerated condition led to fast lactate-to-acetate conversion kinetics between 8 and 12 h, but H2O2 immediately accumulated, thus affecting cell metabolism. Pyruvate oxidase activity was highly enhanced by oxygen tension and was responsible for H2O2 production after 12 h of culture, whereas lactate oxidase and NADH-dependent lactate dehydrogenase activities were not correlated to metabolite production. Limited NADH oxidase (NOX) and NADH peroxidase (NPR) activities were probably responsible for toxic H2O2 levels in over-aerated cultures. CONCLUSION: Modulating initial airflow led to the maximal specific activity of NOX and NPR observed after 24 h of culture, thus promoting H2O2 destruction and strain vitality at the end of the process. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimal aeration conditions were determined to minimize H2O2 concentration level during growth on lactate.  相似文献   

9.
Campylobacter sputorum subspecies bubulus was grown in batch cultures in which the dissolved oxygen tension (d.o.t) was maintained at various constant levels. At a range of d.o.t. from 0.002 to 0.05 atm, which allowed good growth (mean generation time approximately 1.5 h), L-lactate was preferentially consumed before D-lactate. L-lactate oxidation was accompanied by equimolar acetate production during exponential growth. A value for YL-lactate (g dry weight bacteria per mol L-lactate) of 54 was determined. Net acetate production stopped when C. sputorum started to use D-lactate after consumption of L-lactate. When a culture growing exponentially at the expense of L-lactate was shifted from a d.o.t. of 0.02 atm to a d.o.t. of 0.15 atm, growth was impaired, and L-lactate consumption and corresponding acetate production diminished. This decrease correlated with a loss of lactate dehydrogenase activity after the shift. Campylobacter sputorum appeared to possess cytochromes of the b- and c-type and a carbon monoxide-binding pigment. Evidence is given that the principal site of oxygen damage is lactate dehydrogenase rather than the cytochrome chain.  相似文献   

10.
Growth of Mycobacterium phlei under low oxygen tension resulted in specific activities two to twenty times lower for formate dehydrogenase, malate dehydrogenase, beta-hydroxybutyrate dehydrogenase, lactate oxidase and NADH dehydrogenase than when cultures were grown under high aeration. An increase in fumarate reductase and succinate dehydrogenase occurred with M. phlei grown under low oxygen tension. Malate: vitamin K dehydrogenase and glucose-6-phosphate dehydrogenase activity were not significantly affected by the oxygen tension used to grow the bacteria, and neither culture contained a lactate dehydrogenase. With growth of M. phlei in conditions of low oxygen tension, cytochrome a was not detected, but cytochrome b was prominent in membranes and cytochrome c was present in the soluble fraction.  相似文献   

11.
The growth kinetics of Lactococcus lactis ssp. lactis were studied in batch culture in conditions of non-limiting lactose and the presence of citric acid. The control of pH modified growth and citrate metabolism but did not change the yield of acid formation. At controlled pH the growth rate was unaffected by citrate metabolism. Lactose was transformed to L-lactate and assay of the metabolic by-products showed some heterofermentation at the end of the growth of cultures with low growth rates. This heterofermentation was interpreted as a slowing down of glycolysis with activation of both the pyruvate formate lyase (PFL) and the pyruvate dehydrogenase complex (PDHC). Under these conditions the presence of citric acid affected the activity of both the PDHC and the alcohol dehydrogenase (ADH). L-Lactate remains the major fermentation end-product and the sole inhibitor of fermentation, this inhibition was greater on growth than on lactic acid production.  相似文献   

12.
Growth of cultured human fibroblasts in low oxygen resulted in reciprocal changes in the levels of cytochrome oxidase and several glycolytic enzymes. After five days' growth in low oxygen, cytochrome oxidase specific activity fell to 40% of the level of control cultures, while lactic dehydrogenase (LDH), aldolase, and triose phosphate dehydrogenase (TDH) levels were increased by 2- to 3-fold. These changes were accompanied by a change in the LDH isoenzyme pattern resulting from an increase in the proportion of LDH A subunits; the aldolase electropherogram was unchanged. When fibroblasts were grown for five days in medium containing chloramphenicol, cytochrome oxidase specific activity fell to 10% of control values, but LDH, aldolase and TDH specific activities and LDH and aldolase electropherograms did not differ significantly from controls. These findings are interpreted to indicate that the increased accumulation of LDH, aldolase and TDH induced by low oxygen is not mediated by the rate of accumulation of cytochrome oxidase.  相似文献   

13.
Introduction of the Lactobacillus casei lactate dehydrogenase (LDH) gene into Saccharomyces cerevisiae under the control of the TPI1 promoter yielded high LDH levels in batch and chemostat cultures. LDH expression did not affect the dilution rate above which respiro-fermentative metabolism occurred (Dc) in aerobic, glucose-limited chemostats. Above Dc, the LDH-expressing strain produced both ethanol and lactate, but its overall fermentation rate was the same as in wild-type cultures. Exposure of respiring, LDH-expressing cultures to glucose excess triggered simultaneous ethanol and lactate production. However, the specific glucose consumption rate was not affected, indicating that NADH reoxidation does not control glycolytic flux under these conditions.  相似文献   

14.
Myocardial ischemia-reperfusion is associated with bursts of reactive oxygen species (ROS) such as superoxide radicals (O(2)(-).). Membrane-associated NADH oxidase (NADHox) activity is a hypothetical source of O(2)(-)., implying the NADH concentration-to-NAD(+) concentration ratio ([NADH]/[NAD(+)]) as a determinant of ROS. To test this hypothesis, cardiac NADHox and ROS formation were measured as influenced by pyruvate or L-lactate. Pre- and postischemic Langendorff guinea pig hearts were perfused at different pyruvate/L-lactate concentrations to alter cytosolic [NADH]/[NAD(+)]. NADHox and ROS were measured with the use of lucigenin chemiluminescence and electron spin resonance, respectively. In myocardial homogenates, pyruvate (0.05, 0.5 mM) and the NADHox blocker hydralazine markedly inhibited NADHox (16 +/- 2%, 58 +/- 9%). In postischemic hearts, pyruvate (0.1-5.0 mM) dose dependently inhibited ROS up to 80%. However, L-lactate (1.0-15.0 mM) stimulated both basal and postischemic ROS severalfold. Furthermore, L-lactate-induced basal ROS was dose dependently inhibited by pyruvate (0.1-5.0 mM) and not the xanthine oxidase inhibitor oxypurinol. Pyruvate did not inhibit ROS from xanthine oxidase. The data suggest a substantial influence of cytosolic NADH on cardiac O(2)(-). formation that can be inhibited by submillimolar pyruvate. Thus cytotoxicities due to cardiac ischemia-reperfusion ROS may be alleviated by redox reactants such as pyruvate.  相似文献   

15.
NDI1 is the unique gene encoding the internal mitochondrial NADH dehydrogenase of Saccharomyces cerevisiae. The enzyme catalyzes the transfer of electrons from intramitochondrial NADH to ubiquinone. Surprisingly, NDI1 is not essential for respiratory growth. Here we demonstrate that this is due to in vivo activity of an ethanol-acetaldehyde redox shuttle, which transfers the redox equivalents from the mitochondria to the cytosol. Cytosolic NADH can be oxidized by the external NADH dehydrogenases. Deletion of ADH3, encoding mitochondrial alcohol dehydrogenase, did not affect respiratory growth in aerobic, glucose-limited chemostat cultures. Also, an ndi1Delta mutant was capable of respiratory growth under these conditions. However, when both ADH3 and NDI1 were deleted, metabolism became respirofermentative, indicating that the ethanol-acetaldehyde shuttle is essential for respiratory growth of the ndi1 delta mutant. In anaerobic batch cultures, the maximum specific growth rate of the adh3 delta mutant (0.22 h(-1)) was substantially reduced compared to that of the wild-type strain (0.33 h(-1)). This is consistent with the hypothesis that the ethanol-acetaldehyde shuttle is also involved in maintenance of the mitochondrial redox balance under anaerobic conditions. Finally, it is shown that another mitochondrial alcohol dehydrogenase is active in the adh3 delta ndi1 delta mutant, contributing to residual redox-shuttle activity in this strain.  相似文献   

16.
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.  相似文献   

17.
18.
L-Lactaldehyde is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. Under aerobic conditions, L-lactaldehyde is oxidized to L-lactate by the enzyme lactaldehyde dehydrogenase, while under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol by the enzyme propanediol oxidoreductase. Aerobic growth on either of the methyl pentoses induces a lactaldehyde dehydrogenase enzyme which is inhibited by NADH and is very stable under anaerobic conditions. In the absence of oxygen, the cell shifts from the oxidation of L-lactaldehyde to its reduction, owing to both the induction of propanediol oxidoreductase activity and the decrease in the NAD/NADH ratio. The oxidation of L-lactaldehyde to L-lactate is again restored upon a change to aerobic conditions. In this case, only the NAD/NADH ratio may be invoked as a regulatory mechanism, since both enzymes remain active after this change. Experimental evidence in the presence of rhamnose with mutants unable to produce L-lactaldehyde and mutants capable of producing but not further metabolizing it points toward L-lactaldehyde as the effector molecule in the induction of lactaldehyde dehydrogenase. Analysis of a temperature-sensitive mutation affecting the synthesis of lactaldehyde dehydrogenase permitted us to locate an apparently single regulator gene linked to the ald locus at 31 min and probably acting as a positive control element on the expression of the structural gene.  相似文献   

19.
H A Dailey  Jr 《Journal of bacteriology》1976,127(3):1286-1291
The membrane-bound respiratory system of the gram-negative bacterium Spirillum itersonii was investigated. It contains cytochromes b (558), c (550), and o (558) and beta-dihydro-nicotinamide adenine dinucleotide (NADH) and succinate oxidase activities under all growth conditions. It is also capable of producing D-lactate and alpha-glycerophosphate dehydrogenases when grown with lactate or glycerol as sole carbon source. Membrane-bound malate dehydrogenase was not detectable under any conditions, although there is high activity of soluble nicotinamide adenine dinucleotide: malate dehydrogenase. When grown with oxygen as the sole terminal electron acceptor, approximately 60% of the total b-type cytochrome is present as cytochrome o, whereas only 40% is present as cytochrome o in cells grown with nitrate in the presence of oxygen. Both NADH and succinate oxidase are inhibited by azide, cyanide, antimycin A, and 2-n-heptyl-4-hydroxyquinoline-N-oxidase at low concentrations. The ability of these inhibitors to completely inhibit oxidase activity at low concentrations and their effects upon the aerobic steady-state reduction levels of b- and c-type cytochromes as well as the aerobic steady-state reduction levels obtained with NADH, succinate, and ascorbate-dichlorophenolindophenol suggest that presence of an unbranched respiratory chain in S. itersonii with the order ubiquinone leads to b leads to c leads to c leads to oxygen.  相似文献   

20.
NADH oxidase of purified plasma membranes (electron transfer from NADH to oxygen) was stimulated by the growth factor diferric transferrin. This stimulation was of an activity not inhibited by cyanide and was not seen in plasma membranes prepared from hyperplastic nodules from liver of animals fed the hepatocarcinogen, 2-acetylaminofluorene, nor was it due to reduction of iron associated with diferric transferrin. With plasma membranes from nodules, the activity was already elevated and the added transferrin was without effect. The stimulation by diferric transferrin did not correlate with the absence of transferrin receptors which were increased at the nodule plasma membranes. With liver plasma membranes, the stimulation by diferric transferrin raised the plasma membrane NADH oxidase specific activity to approximately that of the nodule plasma membranes. In contrast to NADH oxidase, which was markedly stimulated by the diferric transferrin, NADH ferricyanide oxidoreductase or reduction of ferric ammonium citrate by liver plasma membranes was approximately equal to or slightly greater than that of the nodule plasma membrane and unaffected by diferric transferrin. The results suggest the possibility of coupling of NADH oxidase activity to a growth factor response in mammalian cells as observed previously for this enzyme in another system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号