首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of larval behaviour in successful completion of tissue migration is briefly discussed and it is related to the passive carriage of larvae along the ‘pipes and tubes’ of the host. Larvae of N. brasiliensis were injected into selected portions of the circulatory system and following periods of 5–60 min they were recovered from the blood, liver and lungs. Larvae were also immobilised in 0·4% piperazine, a dosage which permitted recovery in about 60 min. The dispersion of treated larvae was compared with that untreated controls. It was found that larvae were carried very rapidly in the blood stream and that they became lodged in the first capillary bed that they entered. They could not pass through capillary beds without movements (and/or secretions). A decreased number of adults developed after larvae were introduced via a series of routes which required the larvae to pass through an increasing number of ‘hurdles’ to migration.  相似文献   

2.
Dobson C. and Cayzer C. J. R. 1982. Passive transfer of immunity with serum in mice infected with Nematospiroides dubius: in vitro effect of immune serum on larval infectivity. International Journal for Parasitology12: 413–421. Incubation of Nematospiroides dubius larvae in serum in vitro induced 15% exsheathment after 3h. Larvae incubated in immune mouse serum at 37°C for 3h lost 20% of their infectivity for mice. Immune serum from donors given 1–7 concurrent or anthelmintic abbreviated infections all depressed larval infectivity to the same extent. Larvae incubated in immune sera were protected from the effects of passively transferred immune serum in mice following infection. The effects of incubation of larvae in immune serum were prolonged into the adult stages of the parasite and were seen as stunting of worms and a reduction in the male-female sex ratio of the parasites.  相似文献   

3.
Larvae of the Karner blue butterfly, Lycaeidesmelissasamuelis, feed solely on wild lupine, Lupinusperennis, from the emergence to summer senescence of the plant. Wild lupine is most abundant in open areas but Karner blue females oviposit more frequently on lupines growing in moderate shade. Can differences in lupine quality between open and shaded areas help explain this disparity in resource use? Furthermore, many lupines are senescent before the second larval brood completes development. How does lupine senescence affect larval growth? We addressed these questions by measuring growth rates of larvae fed lupines of different phenological stages and lupines growing under different shade conditions. The habitat conditions under which lupines grew and plant phenological stage did not generally affect final larval or pupal weight but did significantly affect duration of the larval period. Duration was shortest for larvae fed leaves from flowering lupines and was negatively correlated with leaf nitrogen concentration. Ovipositing in areas of moderate shade should increase?second-brood larval exposure to flowering lupines. In addition, larval growth was significantly faster on shade-grown lupines that were in seed than on similar sun-grown lupines. These are possible advantages of the higher-than-expected oviposition rate on shade-grown lupines. Given the canopy-related trade-off between lupine?abundance and quality, maintenance of canopy heterogeneity is an important conservation management goal. Larvae were also fed leaves growing in poor soil conditions and leaves with mildew infection. These and other feeding treatments that we anticipated would inhibit larval growth often did not. In particular, ant-tended larvae exhibited the highest weight gain per amount of lupine eaten and a relatively fast growth rate. This represents an advantage of ant tending to Karner blue larvae.  相似文献   

4.
Dawkins H. J. S. and Grove D. I. 1981 Kinetics of primary and secondary infections with Strongyloides ratti in mice. International journal for Parasitology11: 89–96. The kinetics of infection with S. ratti were quantitated in normal and previously exposed C57B1 /6 mice. In primary infections, larvae penetrated the skin rapidly and were seen in peak numbers 12 h after infection. By 24 h after infection, larval numbers had declined appreciably and there was a slow decrease in numbers thereafter. Larvae were first observed in the lungs at 24 h and maximal recovery occurred at 48 h. It is thought that larval migration through the lungs is rapid. Worms were first seen in the intestines two days after infection. Maximum numbers were seen on the fifth day and worm expulsion was complete by day 10. Two moults took place in the small intestine during days 3 and 4 after infection. Rhabditiform larvae were first noted on the fourth day after infection. Mice exposed to S. ratti four weeks previously had significantly less larvae in the skin 4 and 12 h after infection but by 24 h there was no difference when compared with mice with primary infections. Peak recovery of larvae from the lungs occurred 24 h after infection; significantly less larvae were recovered on days 2 and 3 when compared with normal mice. There was a marked reduction in the adult worm burden in the gut; the number of worms recovered was less than one fifth of that seen in primary infections. Those worms which did mature were less fecund and were expelled from the intestines within 7 days of infection. It is suggested that in previously exposed animals, the migration of larvae from the skin is hastened, many of these larvae are destroyed in the lungs and that expulsion of worms which do mature in the intestines is accelerated.  相似文献   

5.
Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2h, 100% in 48h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.  相似文献   

6.
Analysis of the early stages of a challenge infection with Strongyloides ratti has shown that protection is expressed against the developing third-stage larval worms (L3) and prevents the maturation to adulthood of most larvae. Challenge after an immunizing infection that was restricted to the parenteral L3 migratory phase showed that some 10–40% of overall protection could be ascribed to systemic antilarval immunity. Some larvae were trapped in the skin at the site of injection whereas others failed to migrate to the head and lung of immune rats. Larvae arriving in the intestine at Days 3, 4, and 5 did not persist beyond Day 7 and 8. Studies using [75Se]methionine-labeled L3 showed a significant increase in fecal label in rats immunized by a complete infection. This loss did not occur to the same extent in rats immunized only with parenteral larvae. Significant rejection of worms transplanted to the intestine also indicated intestinal protection. The possible existence of large numbers of worms in a state of “arrested development” was excluded by their failure to appear after cortisone treatment and the absence of worm accumulation in radiolabeling studies. It is concluded that at least two responses operate against larval S. ratti, one is systemic and the other operates in the intestine against larvae in a manner that resembles the “rapid expulsion” rejection of Trichinella spiralis in immune rats.  相似文献   

7.
Caddisflies, whose aquatic larvae build a portable case with silk, are a suitable model organism to test the impacts of resource allocation trade-off during development and examine the evolution of life-history strategies. In the caddisfly Limnephilus rhombicus, adult feeding is minimal. Therefore, the whole resources are acquired during the larval phase and must be allocated to case construction, growth and reproduction. In this study, the larval energetic reserves of L. rhombicus were manipulated by forcing larvae to rebuild their cases in the final larval stage. This allowed us to measure the physiological cost of construction. First, we recorded oxygen consumption during case reconstruction. Second, we measured the sugar, protein and lipid contents of larvae forced to rebuild their case and of larvae required only to re-enter on their case. Larvae had their sugar, protein and lipid content measured after the rebuilding event and 72 h later. The same analyses were carried out with adults immediately after emergence. We found that larvae forced to rebuild a case consumed 1.5 times more oxygen than control larvae. This energy expenditure generated a cost that was estimated to be a loss of larval protein of approximately 35%. Insects were unable to compensate for this loss of proteins during the end of the larval stage, and their metamorphosis to adults was also impacted. Therefore, we suggest that loss of larval protein is linked to silk production and may alter fitness.  相似文献   

8.
R. S. Wotton 《Ecography》1987,10(1):65-72
Larvae of the blackfly Simulium noelleri aggregated at very high population densities (up to 1.2 × 106 individuals m−2) at a lake outlet in Kent, United Kingdom. During 1983 and 1984 their first appearance in these large numbers was in late-June and they completed three summer generations before the overwintering larval generation appeared in October. It is not known where the larvae overwinter but they recolonized the concrete steps of this outlet in May, together with larvae of the S. ornatum group which, however, were not found after completing one generation at this location.
Female flies from the overwintering generation oviposited en masse during late-June and the result was a well-synchronized growth of larvae in the first summer generation. Within this, and other generations, there was A wide range of emergence times for adults; they could emerge early and were then relatively small, or could emerge later and were then relatively large. Females were always larger than males and the emergence of flies was protandrous. A very similar pattern of growth and emergence times was found at a site in Finland.
In all generations, sex ratio was biased to males and the sex ratio in each generation was inversely correlated with population density. This ensured that there were sufficient males emerging, and surviving adult mortality, to guarantee fertilisation of the females which were more expensive to produce.  相似文献   

9.
Abstract. 1. Larvae of the grazing caddis‐fly Melampophylax mucoreus were reared in a laboratory experiment investigating the effect of food availability on different substrates and cannibalism on the size and biomass of emergent adults. All experiments were performed in stream‐water filled, aerated aquaria under controlled temperature and light conditions. Larvae (fourth and fifth instar) were reared in aquaria (50 larvae in each) with three substrate scenarios: (i) limestone (LS), (ii) limestone and leaf litter (LS + L), and (iii) silicate stone (SS). 2. Cannibalism among the larvae in the LS scenario led to the highest adult dry masses (male = 5.13 ± 0.25 mg, female = 7.64 ± 0.63 mg) and to the highest mortality rate (88.7%). The SS scenario displayed the most unfavourable condition for larval growth indicated by the lowest adult dry masses (males = 3.12 ± 0.15 mg, females = 4.69 ± 0.25 mg) and a high mortality rate (81.7%). The limestone supplemented with leaf litter (ii) offered the most balanced nutrients to complete larval development and enough shelter to avoid excessive encounter rates of larvae within the aquaria, indicated by the lowest mortality rate (43.6%). Adults from the LS + L scenario showed biomasses (male = 3.94 ± 0.12 mg, female = 6.48 ± 0.24 mg) intermediate between the two other scenarios. 3. The results implied that cannibalism among larvae can lead to higher adult biomasses and therefore to increased fitness, if cannibalism supplements larval feeding requirements. Larvae developing under insufficient food availability can not compensate for this by cannibalism. Additionally, leaf litter not only provided a complementary food source for developing larvae, but also provided shelter, which reduced encounter rates. 4. Increased stress induced by high larval encounter rates (resulting in enhanced cannibalism) in the LS scenario and low food availability in the SS scenario could be indicated by premature emergence times compared with the LS + L scenario.  相似文献   

10.
Heliothis zea was reared on artificial diets which lacked supplementation with plant materials but were supplemented with different sterols in order to determine how certain structural features of a sterol molecule affect the development of this insect. We found that sitosterol and cholesterol supported a more rapid rate of growth than did campesterol. Larvae did not moult when they ingested 5-pregnen-3β-ol. Larvae utilized spinasterol more efficiently than lathosterol. Such a pronounced effect was not observed in the Δ5-series. The substitution of a Δ7-bond (spinasterol, dihydrospinasterol, lathosterol) for the Δ5-bond (stigmasterol, sitosterol, cholesterol) in the 24-ethyl- and desalkylsterols reduced the rate of growth of the larvae. Although larvae developed normally on cholesterol, the addition of a Δ7-bond to give the Δ5,7-diene system apparently altered the functionality of the molecule because 7-dehydrocholesterol did not support larval development. The growth of larvae was also inhibited, although not prevented, when they consumed diets which contained ergosterol. In contrast, the larvae completed their development more rapidly on brassicasterol which lacked the Δ7-bond. Cholestanol supported the complete development of the insect. H. zea is unusual among investigated insects because it develops both on cholestanol and lathosterol but does not utilize ergosterol efficiently and fails to grow on 7-dehydrocholesterol.  相似文献   

11.
Bile activated and maintained the motility of infective larvae of N. dubius for up to 3 h, compared to the response of only 20 min induced by mechanical stimulation. Larvae accumulated significantly more in bile than in distilled water controls. A dose-response curve showed an exponential increment in the percentage of larvae active after 30 min between aqueous bile concentrations of 0.2–5.0%. Removal or reduction of bile by ligaturing, cannulation or externalization of the bile duct was consistently associated with reduced larval establishment. Larvae established significantly in areas to which the bile had been surgically redirected. The role of bile in larvae habitat selection behaviour is discussed.  相似文献   

12.
Larvae of the potato tubermoth (PTM), Phthorimaea operculella, feed on potato plants and tubers and are a major pest in the tropics and subtropics worldwide, causing up to 100% damage. The PTM granulovirus (PhopGV) provides significant potato protection, but little is known about its effect on larval development or its histopathology. Here we show that only 10% of larvae exited from PhopGV-treated tubers (1.4 × 108 granule/ml), lagging significantly behind controls, and most of these died by 72 h after emergence. Histopathology studies showed the fat body and epidermis were the principal tissues infected. PhopGV morphogenesis was similar to other GVs, the exception being small vesicles between mature granules.  相似文献   

13.
Recent research has documented phenotypic differences among larvae released from corals with a brooding reproductive mode, both among species and within broods from a single species. We studied larvae released from the common Atlantic coral Porites astreoides in Bermuda to further evaluate phenotypic variability. Inter-site differences were investigated in larvae from conspecifics at a rim and patch reef site. Larvae were collected daily for one lunar cycle from several colonies per site each year over 5 yr. Larval volume varied with reef site of origin, with colonies from the rim reef site producing larger larvae than colonies from the patch reef site. This inter-site variation in larval size could not be explained by corallite size and may be a response to different environmental conditions at the sites. Larvae from both reef sites also varied in size depending on lunar day of release over 4 yr of study. Regardless of site of origin, smaller larvae were released earlier in the lunar cycle. Over 1 yr of study, lipid and zooxanthellae content and settlement success after 48 h covaried with larval size. However, there may be a trade-off between larger larvae and reduced fecundity. Overall, larvae released from colonies from the rim reef site were larger and had greater settlement success than those from colonies from the patch reef site. This study documents larval phenotypic variability and a distinct inter-site difference in larval ecology among conspecifics within the same geographic area, which may have implications for recruitment success, population dynamics, and resilience.  相似文献   

14.
Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild.  相似文献   

15.
Rising sea temperatures may potentially affect the dispersive larval phase of sessile marine invertebrates with consequences for the viability of adult populations. This study demonstrated that the planktonic larvae of Rhopaloeides odorabile, a common Great Barrier Reef sponge, survived and metamorphosed when exposed to temperatures up to 9°C above the annual maximum (~29°C). Planktonic larval duration of 54 h, at ambient temperatures (~28°C), were reduced to 18 h for larvae exposed to elevated temperatures (32–36°C). Moreover, at ambient temperatures larvae began metamorphosing after 12 h, but at 32–36°C this reduced to only 2 h. Larvae survived and could still metamorphose at temperatures as high as 38°C, but were no longer functional at 40°C. These results imply that predicted increases in sea surface temperature may reduce planktonic larval duration and dispersal capabilities, thereby contributing to population subdivision of the species.  相似文献   

16.
1. As part of a study designed to estimate the developmental costs of antipredator behaviour of larval chironomids, we used laboratory experiments to study effects of food and factors that could influence predation risk [presence of fish, cover from fish (simulated debris) and light level], on microhabitat selection by Chironomus tentans larvae in the third and fourth instar. 2. Larvae were more likely to build tubes where there was more food although their ability to move far to find food appeared limited. 3. Larvae did not avoid areas with fish and the presence of fish did not alter larval response to food. 4. Larvae avoided areas of cover (simulated debris) but cover did not alter larval response to food. 5. When provided with a choice between light and dark areas, larvae initially without tubes were found more often in the dark areas. Light level had no effect on location of larvae that had begun the experiment with tubes. 6. Results suggest the tubicolous life-style of larval Chironomus tentans limits their ability to select microhabitats that could alter their risk of predation.  相似文献   

17.
Parelaphostrongylus odocoilei is a protostrongylid parasite that has recently been recognized at several locations in sub-Arctic, but not Arctic, North America. We investigated factors that may determine the distribution of P. odocoilei, including suitable gastropod intermediate hosts, temperature requirements for larval development in gastropods, and larval emergence facilitating overwinter transmission. We collected and experimentally infected gastropods from a site in the sub-Arctic where P. odocoilei is at the northern limit of its distribution. Deroceras laeve, Catinella sp., and Euconulus cf fulvus, but not members of the Pupillidae, were suitable intermediate hosts. We describe bionomics of larvae of P. odocoilei in D. laeve and Catinella sp. Infective larvae emerged from all slugs (D. laeve) and 60% of Catinella sp. snails, and emergence from D. laeve was intensity dependent. Emerged infective larvae survived up to 6 mo under conditions approximating that of the subnivean environment. In D. laeve, there was a direct relationship between temperature and development rate of larvae of P. odocoilei. Larvae of P. odocoilei did not develop to infective stage below the theoretical threshold (8.5 C), and required a minimum of 163 degree days to complete development. These developmental parameters can be incorporated into a model to predict larval development in the field. Knowledge of the factors influencing larval bionomics provides the foundation for predicting temporal and spatial patterns of parasite distribution, abundance, and transmission.  相似文献   

18.
Plagiorchis noblei infections impair the survival and development of fourth instar Aedes aegypti larvae. Mortality during the larval and pupal stages reached 92%, and 60% of the emerging adults were malformed. The metacercariae interfere with pupation and the emergence of adults. Larvae and pupae that fail to transform to the next developmental stage within the normal time characteristically persist for extended periods, but invariably die without transforming. Whereas 82% of the control larvae gave rise to functional adults, only 4% of infected larvae managed to do so. Such effects may facilitate the transmission of the parasite.  相似文献   

19.
Adult oviposition preferences are expected to correlate with host plant suitability for the development of their offspring. For most lepidopteran species, this is particularly important as the hatching neonate larvae of many species are relatively immobile. Thus, the site of oviposition chosen by a female adult can greatly influence the probability of survival for her offspring. In the present study, we investigated the oviposition preference of adult Trichoplusia ni moths for six plant species to determine whether they could accurately rank the suitability of the plants for larval development. We also compared oviposition preferences to neonate larval acceptance and preference to determine whether the adult host range matched that of larval diet breath. Our results indicate that in two-choice and no-choice tests adult T. ni were able to rank the plants accurately, with the exception of anise hyssop. However, when given a choice of all six plants together, they laid more eggs on a plant that was not suitable for larval survival. Larvae accepted and fed on all plants in no-choice tests, and accurately ranked them according to larval performance. We conclude that neonate larvae are better able than adults to rank plants according to larval performance, and that larval diet breadth is wider than the range of plants accepted by adults. We also provide a discussion of the reduced accuracy of adult oviposition preference with increased plant choices.  相似文献   

20.
Activity is a key behavioral trait that often mediates a trade-off between finding food for growth and evading predation. We investigated how activity of the damselfly Lestes congener is affected by larval state and predator presence and if larval behavioral type (BT) can be used to predict larval emergence behavior. Activity level of individual larvae was studied without predators at two different physiological states (hungry, fed) and in two predator treatments (familiar or unfamiliar predator cues). Larvae did not adjust their activity depending on state or when subjected to unfamiliar predator cues but a general reduction in activity was seen in the familiar predator treatment. Hence, active individuals remained active compared to their conspecifics, independent of state or predator treatment illustrating the presence of a behavioral syndrome. However, we found no correlation between larval BT and emergence behavior. Active individuals did not differ from less active individuals in any emergence characteristics. The results illustrate that the larval BT occurs in many situations keeping active larvae active even in maladaptive situations. Furthermore, we show that damselfly emergence behavior can be completely decoupled from larval BT, indicating a loss of stability in individual BT during critical stages in ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号