首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure and the appearance of glycogen were studied in the extraocular muscles of 14 externally normal human embryos (Carnegie stages 13-21). At stage 16, myofibrils with an immature Z line and glycogen granules appeared in the cytoplasm of the myoblast. The myoblasts came into cluster at stage 18, and fusion between the myotubes was observed at stage 20. At this stage, an M line appeared in the myofibrils. At stage 21, an A band with a Z line and an H band with an M line were observed, the sarcoplasmic reticulum appeared in the cytoplasm of the muscle fibers and glycogen increased in volume in the cytoplasm. In the previous study, we showed that the muscle-specific isoenzymes, such as creatine kinase, beta-enolase and glycogen phosphorylase, appeared from stage 18 to 20 in the extraocular muscles. The previous findings and the present results suggest that the fusion of the muscle cells occurs in the period when some molecular markers of muscle differentiation are expressed in vivo.  相似文献   

2.
Summary Cells isolated from ascidian smooth muscle were about 1.5–2 mm in length. Each contained 20–40 nucle in proportion to cell length. The cytoplasm was characterized by the presence of an enormous quantity of glycogen particles, tubular elements of sarcoplasmic reticulum coupled to the cell membrane, and conspicuous contractile elements. Thick and thin filaments had diameters of about 14–16 nm and 6–7 nm, respectively. The population density of the thick filaments was much higher (mean 270/m2 filament area) than in vertebrate smooth muscles. The ratio of thick to thin filaments was about 16. All the thick filaments were surrounded by a single row of 5–9 thin filaments forming a rosette, and cross-bridges with periodicities of 14.5 and 29 nm were found between them. The contractile apparatus consisted of numerous myofibrils which were arranged nearly along the cell axis and were separated from each other by a network of 10-nm filaments. The myofibrils further consisted of many irregularly arranged sarcomerelike structures, each of which was comprised of a small group of thick and thin filaments with attached dense bodies.  相似文献   

3.
Summary An extensive network of intermediate filaments that interconnected cytoplasmic dense bodies and connected the dense bodies to the cell surface was revealed in double-fixed, tannic acid-stained preparations of ascidian smooth muscle. The filament network ran through spaces in the continuous network of myofibrils, connecting them longitudinally, obliquely and transversely to form an intimately associated, dual network. In their transverse passage, the intermediate filaments ran across myofibrils along I-zones exclusively, interconnecting successive dense bodies.The pattern of attachment of intermediate filaments to dense bodies was predominantly one-sided. The filaments, which themselves were not incorporated into the contractile apparatus, remained folded or unfolded between myofibrils and between sarcomere-like structures in synchrony with the contraction-relaxation cycles.These results suggest that the intermediate filaments mechanically maintain the organization and arrangement of myofibrils via an intimate association with the myofibrils in the regions of the dense bodies, in such a way that the filaments do not impede muscle function.Based on these observations, a new model for the network of intermediate filaments in smooth muscle cells is proposed.  相似文献   

4.
The myofibrils in Drosophila have thick and thin types of myofilaments arranged in the hexagonal pattern described for Calliphora by Huxley and Hanson (15). The thick filaments, along most of their length in the A band, seem to be binary in structure, consisting of a dense cortex and a lighter medulla. In the H zone, however, they show more uniform density; lateral projections (bridges) also appear to be absent in this region. The M band has a varying number of granules (probably of glycogen) distributed between the myofilaments. The myofilaments on reaching the Z region appear to change their hexagonal arrangement and become connected to one another by Z filaments. The regular arrangement of the filaments found in most regions of the fibrils is not seen in the terminal sarcomeres of some flight muscles; the two types of filaments appear to be intermingled in an irregular pattern in these parts of the fibrils. The attachment of myofibrils to the cuticle through the epidermal cells is described.  相似文献   

5.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

6.
Hagfish, the plesiomorphic sister group of all vertebrates, are deep-sea scavengers. The large musculus (m.) longitudinalis linguae (dental muscle) is a specialized element of the feeding apparatus that facilitates the efficient ingestion of food. In this article, we compare the protein expression in hagfish dental and somatic (the m. parietalis) skeletal muscles via two-dimensional gel electrophoresis and mass spectrometry in order to characterize the former muscle. Of the 500 proteins screened, 24 were identified with significant differential expression between these muscles. The proteins that were overexpressed in the dental muscle compared to the somatic muscle were troponin C (TnC), glycogen phosphorylase, β-enolase, fructose-bisphosphate aldolase A (aldolase A), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, myosin light chain 1 (MLC 1) and creatine kinase (CK) were over-expressed in the somatic muscle relative to the dental muscle. These results suggest that these two muscles have different energy sources and contractile properties and provide an initial representative map for comparative studies of muscle-protein expression in low craniates.  相似文献   

7.
In Megalobulimus abbreviatus, the ultrastructural features and the contractile proteins of columellar, pharyngeal and foot retractor muscles were studied. These muscles are formed from muscular fascicles distributed in different planes that are separated by connective tissue rich in collagen fibrils. These cells contain thick and thin filaments, the latter being attached to dense bodies, lysosomes, sarcoplasmic reticulum, caveolae, mitochondria and glycogen granules. Three types of muscle cells were distinguished: T1 cells displayed the largest amount of glycogen and an intermediate number of mitochondria, suggesting the highest anaerobic metabolism; T2 cells had the largest number of mitochondria and less glycogen, which suggests an aerobic metabolism; T3 cells showed intermediate glycogen volumes, suggesting an intermediate anaerobic metabolism. The myofilaments in the pedal muscle contained paramyosin measuring between 40 and 80 nm in diameter. Western Blot muscle analysis showed a 46-kDa band that corresponds to actin and a 220-kDa band that corresponds to myosin filaments. The thick filament used in the electrophoresis showed a protein band of 100 kDa in the muscles, which may correspond to paramyosin.  相似文献   

8.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

9.
Skeletal muscle cells (fibers) contract by shortening their parallel subunits, the myofibrils. Here we show a novel pattern of myofibril orientation in white muscle fibers of large black sea bass, Centropristis striata. Up to 48% of the white fibers in fish >1168 g had peripheral myofibrils undergoing an ~90o shift in orientation. The resultant ring band wrapped the middle of the muscle fibers and was easily detected with polarized light microscopy. Transmission electron microscopy showed that the reoriented myofibrils shared the cytoplasm with the central longitudinal myofibrils. A microtubule network seen throughout the fibers surrounded nuclei but was mostly parallel to the long‐axis of the myofibrils. In the ring band portion of the fibers the microtubule cytoskeleton also shifted orientation. Sarcolemmal staining with anti‐synapsin was the same in fibers with or without ring bands, suggesting that fibers with ring bands have normal innervation and contractile function. The ring bands appear to be related to body‐mass or age, not fiber size, and also vary along the body, being more frequent at the midpoint of the anteroposterior axis. Similar structures have been reported in different taxa and appear to be associated with hypercontraction of fibers not attached to a rigid structure (bone) or with fibers with unusually weak links between the sarcolemma and cytoskeleton, as in muscular dystrophy. Fish muscle fibers are attached to myosepta, which are flexible and may allow for fibers to hypercontract and thus form ring bands. The consequences of such a ring band pattern might be to restrict the further expansion of the sarcolemma and protect it from further mechanical stress. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
AN ANALYSIS OF MYOGENESIS BY THE USE OF FLUORESCENT ANTIMYOSIN   总被引:45,自引:34,他引:11       下载免费PDF全文
Antibodies against myosin of adult chicken skeletal muscle were labelled with fluorescein and used as staining reagents to analyze the development of trunk myoblasts in the chick embryo. Myoblasts from the brachial myotomes were studied in three ways: (a) Specimens were fixed, sectioned, and stained with iron-hematoxylin. (b) Living myoblasts, and myoblasts prepared by glycerol extraction, were teased and examined by phase contrast microscopy. (c) Embryo trunks were treated with fluorescent antimyosin or with a control solution of fluorescent normal globulin, and were examined by fluorescence and phase contrast microscopy. Both glycerol-extracted and fixed materials were used. Cross-striated myofibrils appeared first in stage 16 to 17 embryos in the series studied by antimyosin staining and fluorescence microscopy. Striated myofibrils appeared first in stage 18 to 19 embryos, in the series stained by iron-hematoxylin, and at stage 22 to 23, in the series studied by glycerol extraction and phase contrast microscopy. In each series, myofibrils without apparent cross-striations were detected shortly before cross-striations were observed. Specific staining by antimyosin occurred only in differentiating myoblasts. Within the myoblasts antimyosin staining was confined to the A bands of the slender myofibrils. The following observations suggest that the first delicate striated structure to appear in the early 3 day myoblast was remarkably mature: (1) The sarcomere pattern both in length and in internal detail, was similar to that of adult muscle. (2) The distribution of myosin, as revealed by antimyosin staining, was the same in the embryonic as in the mature myofibril. (3) Glycerol-extracted myoblasts contracted vigorously on exposure to ATP. The changes in sarcomere band pattern were indistinguishable from those occurring during contraction of adult muscle induced by ATP. (4) ATP contraction was blocked by prior antimyosin staining in embryonic myoblasts as in mature muscle. It is suggested that the early myofibril grows laterally as a thin sheet associated with the sarcolemma, and that growth in length occurs in the growth tips of the elongating myoblast.  相似文献   

11.
The ultrastructure of the mouse esophagus at the level of the diaphragm was studied from embryo day 17 to adult. The transdifferentiation of smooth muscle into skeletal muscle was categorized into seven ultrastructural stages: during phase I normal smooth muscle myogenesis was observed. In phase II subpopulations of cells changed into aggregates of myoblast-like cells. At the center of these cell aggregates, phase III cells appeared that contained condensed myofilaments. Dense bodies and dense bands appeared enlarged by the accumulation of thin filaments. In phase IV the condensed myofilaments organized into sarcomere pretemplate structures. The dense bodies and dense bands formed rudimentary Z-lines. In phase V the sarcomere templates appeared as more defined structures and began to align. An elaborate perinuclear region appeared. During phase VI, skeletal muscle sarcomeres were apparent and myofilaments were arranged in a typical hexagonal array. Phase VII skeletal muscle fibers were unique with sarcomeric bifurcations and anastomoses between adjacent myofibrils. Non-contractile organelles were less organized in these cells than in skeletal muscles such as rectus and vastus lateralis muscles. During the transdifferentiation process, other cell types remained unchanged, except the number of interstitial cells of Cajal became reduced. Immunocytochemical studies with antibodies against smooth and skeletal muscle myosin were also performed during the process of transdifferentiation. An osmium tetroxide/potassium ferricyanide en bloc mordant enabled the use of ultrathin Unicryl sections for immunocytochemistry. Cells exhibited smooth muscle myosin-like immunoreactivity from the smooth muscle stage through the condensed myofilament stage. Cells were immunopositive for skeletal muscle myosin before the formation of sarcomere templates, during the condensed stage, and after development of mature skeletal muscle cells. We also observed a hybrid muscle cell with properties of both smooth and skeletal muscle cells.  相似文献   

12.
Summary The organization of the flagellum abductor muscle and of a scaphognathite levator muscle of the green crab, Carcinus maenas, has been compared quantitatively using light and electron microscopy. These muscles are rhythmically active at relatively high frequencies and for long durations. Fibers of both muscles are interconnected to form fascicles of 50 or more fibers within which there is cytoplasmic continuity. A single muscle is made up of 8–12 fascicles. Individual fibers consist of a peripheral rind of densely packed mitochondria, a thick region of glycogen granules, and myofibrils arranged into scattered central islands. Less than half the volume-density of these muscles is contractile material, the balance being largely mitochondria and glycogen. The fibers within a muscle are structurally similar. They have short sarcomeres (about 2 m), thin to thick filament ratios of about 3:1, and junctions between the sarcoplasmic reticulum and the transverse tubules at the M line. Sarcoplasmic reticulum occupies about 10% of the myofibrillar volume-density. A well developed sarcoplasmic reticulum appears to underlie the capacities of these two muscles for high frequency contraction; extensive mitochondria and glycogen stores should confer fatigue resistance under both aerobic and anaerobic conditions.  相似文献   

13.
Lung fluke, Paragonimus heterotremus, is a flatworm causing pulmonary paragonimiasis in cats, dogs, and humans in Southeast Asia. We examined the ultrastructure of the testis of adult P. heterotremus with special attention to spermatogenesis and spermiogenesis using scanning and transmission electron microscopy. The full sequence of spermatogenesis and spermiogenesis, from the capsular basal lamina to the luminal surface, was demonstrated. The sequence comprises spermatogonia, spermatocytes with obvious nuclear synaptonemal complexes, spermatids, and eventual spermatozoa. Moreover, full steps of spermatid differentiation were shown which consisted of 1) early stage, 2) differentiation stage representing the flagella, intercentriolar body, basal body, striated rootlets, and electron dense nucleus of thread-like lamellar configuration, and 3) growing spermatid flagella. Detailed ultrastructure of 2 different types of spermatozoa was also shown in this study.  相似文献   

14.
Penaeoidean shrimp pleonal muscle is a valuable economic resource worldwide, but little is known of its development during larval stages. The development of pleonal muscle in Penaeus (Litopenaeus) vannamei was studied by rhodamine-phalloidin staining and laser-scanning confocal microscopy. Dorsal pleonal muscle was first evident at the protozoea I stage while ventral pleonal muscle was present by the protozoea II stage. Identifiable ventral pleonal muscles were evident by the protozoea III stage and all ventral muscle types were present in the mysis I. The tail flex response began at the mysis stage and growth of existing pleonal muscles continued. The pleopods formed during the mysis stages, with coxal and basis muscles developed by mysis III. The pleopods became functional beginning with the first post-larval stage. We conclude that the pleonal muscle pattern of P. vannamei larvae is similar to that of adult Penaeus setiferus, and that homologous muscles are present. The major formation of dorsal pleonal muscles occurs during the protozoea II stage, while significant development of ventral pleonal muscles occurs during the protozoea III stage.  相似文献   

15.
M. Cristina Faccioni-Heuser, Denise M. Zancan, Christiane Q. Lopes and Matilde Achaval. 1999. The pedal muscle of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata): an ultrastructure approach. — Acta Zoologica (Stockholm) 80: 325–337
The ultrastructure of the pedal muscle of the Megalobulimus oblongus is described. This muscle consists of transverse, longitudinal and oblique bundles ensheathed in collagenous tissue. Each muscle cell is also ensheathed by collagen. The smooth muscle cells contain thin and thick filaments; the thin filaments are attached to dense bodies. These cells contain a simple system of sarcoplasmic reticulum, subsarcolemmal caveolae and mitochondria with dense granules in the matrix, and glycogen. Three types of muscle cells were identified. Type A cells exhibited densely packed myofilaments, abundant glycogen rosettes, numerous mitochondria and sarcoplasmic reticulum profiles. Type B cells exhibited scanty glycogen and mitochondria, few cisternae of sarcoplasmic reticulum and large intermyofibrillar spaces. Type C cells exhibited intermediate characteristics between type A and type B cells. Neither nexus nor desmosomes were observed between the muscle cell membranes. The muscle contains well developed connective tissue and blood vessels. These structures and the distribution of muscle cells are probably involved in the muscular-hydrostat system. The muscle is richly innervated, having neuromuscular junctions with clear and electron-dense synaptic vesicles. The clear vesicles probably contain acetylcholine because the axons to which they are connected arise from acetylcholinesterase positive neurones of the pedal ganglion. The other vesicles may secrete monoamines such as serotonin and/or neuropeptides such as substance P.  相似文献   

16.
The somatic musculature of Trichodorus porosus is transversely striated, and that of Criconemoides similis is obliquely striated. The species also differ in configuration of the myofibrils, arrangement of the filaments within the myofibrils, and abundance of sarcoplasmic reticulum. Both species are platymyarian and meromyarian. The muscle cells are composed of myofibrils, sarcoplasm, sarcoplasmic reticulum, and various organelles. The myofibrils of both species contain actin and myosin filaments.  相似文献   

17.
The appearance of muscle proteins in the contractile apparatus of the mussel Mytilus trossulus was subjected to comparative analysis during ontogenesis. It was established, with the use of Western blot analysis and electrophoresis in polyacrylamid gel in the presence of sodium dodecylsulfate, that proteins of the contractile apparatus of mussel muscles express long before the formation of the first functionally active muscle system of the veliger larvae. Paramyosin is present in egg cells; twitchin, myorod, and actin appear at the stage of blastula (12 h after fertilization), and myosin appears at the trochophore stage (17 h after fertilization). The quantitative relation of muscle proteins was studied in actomyosin extracts of larvae obtained from different developmental stages. It was shown that the ratios actin/myosin and paramyosin/myosin at the veliger stage (96 h after fertilization) were found to be similar to those in the striated muscles of invertebrates.  相似文献   

18.
Summary A culture system for adult rat cardiac muscle cells has been established without exposure of cells to serum at any step of the procedure. The methodology has been standardized and optimized to obtain better quality and high yield of cells and culture. Subsequent to enzyme perfusion, the release of myocytes from enzyme-perfused tissues was carried out in enzyme-free Joklik's medium instead of exposing cells to proteolytic enzyme(s) as done previously. Approximately 5 million cylindrical muscle cells per ventricle were obtained. The culture medium contained Eagle's minimum essential medium with Earle's salts, basic fibroblast growth factor, epidermal growth factor, insulin, transferrin, selenium, norepinephrine, triiodothyronine (T3), bovine serum albumin, nonessential amino acids, and ascorbic acid. The plating efficiency of the experimental cultures was comparable to that of the control cultures grown in the presence of serum. The cells in the serum-free medium contained myofibrillar and myosin isoforms characteristics of the adult myocytes. The cells underwent cellular reorganization comparable to that of the controls. The initial phase of reorganization involved the breakdown of myofibrils and extrusion of mitochondria, degraded myofibrils, and other cellular organelles. The latter phase of reorganization included myofibrillogenesis and organellogenesis resulting in the development of myofibrillar apparatus with cellular organelles. Myocytes were contractile throughout the culture period. Cardiac myocytes grown, in serum-free medium expressed the predominant myosin isoform V1 similar to their counterparts in vivo. T3 is essential for the expression of isomyosin V1. This study demonstrates that adult cardiac muscle cells can be maintained in long-term serum-free culture from seeding to termination. The cells in serum-free conditions maintain at least two differentiated characteristics of adult myocytes investigated, namely, abundant organized myofibrils and predominant myosin isoform V1. This work is supported by grant DCB-8709594 from the National Science Foundation, Washington, DC  相似文献   

19.
Infantile acid maltase deficiency   总被引:1,自引:0,他引:1  
The loss of normal ultrastructure of skeletal muscle during the relentless course of infantile acid maltase deficiency (AMD) is re-examined in the light of the lysosomal rupture hypothesis. This hypothesis suggests that movement and increased myofibril rigidity during contraction cause lysosomes in muscle to rupture and release glycogen and other lysosomal contents to a much greater extent than do lysosomes in other cell types in cases of infantile AMD. Muscle fibers are destroyed, while macrophages and other cells mostly accumulate glycogen in storage lysosomes without being destroyed. When morphological stages of fiber destruction are placed in a sequential series, from fibers most like normal infant muscle to those with only remnants of muscle ultrastructure, the earliest stages seen contain intact storage lysosomes. Intermediate stages exhibit ruptured lysosomal membranes and free glycogen as well as glycogen in lysosomes. Loss of myofibrillar material and loss of glycogen occur in later stages of fiber destruction. Membrane-enclosed glycogen and mitochondria are relatively protected from the process of destruction. The electron-microscopic observations support the lysosomal rupture hypothesis and are compatible with the original proposal of Hers, that the disease results from a deficiency of a single lysosomal enzyme. Secondary changes other than muscle fiber destruction probably relate to disrupted control mechanisms and the nature of muscle as a specialized cell. At least two different mechanisms could contribute to the loss of contractile activity and myofibrillar structure.  相似文献   

20.
Neuromuscular synapses from the single excitor axon to the proximal accessory flexor muscle (PAFM) was studied by serial section electron microscopy in a 1st stage larval (< 0.1 g) and a large adult (6.8 kg) lobster. The adult innervation of a lateral and a medial fiber, physiologically identified as low- and high-output respectively, was similar in the number and mean size of synapses but had significantly larger pre-synaptic dense bars for the high-output synapses. This correlation between quantal transmitter output and pre-synaptic dense bars and the appearance of exocytotic profiles along the dense bars strongly implicates the bars as active sites of transmitter release. Moreover the mature innervation is differentiated on the basis that the percentage of dense bar area to synaptic area is 9% for the low-output type compared to 22% for its high-output counterpart. In the larval PAFM the excitatory axon has not proliferated many branches and the innervation is therefore localized to groups of fibers in the lateral, medial and central regions of the muscle rather than to individual fibers. The lateral and medial sites of innervation representing putative low- and high-output types respectively (because of their location) do not differ in the size and number of pre-synaptic dense bars thereby suggesting a similarity in quantal synaptic transmission. However the percentage of dense bar area to synaptic area is 40% for the lateral site compared to 67% for the medial site. Since this is a trend mimicking the mature innervation it shows an early stage in the differentiation of low-and high-output synapses. Furthermore the main axon provides half of the total innervation in the larval PAFM but none in the adult thereby demonstrating a restructuring of multiterminal innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号